浏览全部资源
扫码关注微信
1. 南京邮电大学 格林贝格尔研究中心,江苏 南京,210003
2. 中国科学院 上海微系统与信息技术研究所 信息功能材料实验室 上海,200050
收稿日期:2013-11-01,
修回日期:2013-12-27,
纸质出版日期:2014-11-25
移动端阅览
李欣, 施政, 贺树敏等. 微机电可调硅基三族氮化物光栅[J]. 光学精密工程, 2014,22(11): 2945-2949
LI Xin, SHI Zheng, HE Shu-min etc. MEMS-tunable Ⅲ-nitride grating on silicon substrate[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 2945-2949
李欣, 施政, 贺树敏等. 微机电可调硅基三族氮化物光栅[J]. 光学精密工程, 2014,22(11): 2945-2949 DOI: 10.3788/OPE.20142211.2945.
LI Xin, SHI Zheng, HE Shu-min etc. MEMS-tunable Ⅲ-nitride grating on silicon substrate[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 2945-2949 DOI: 10.3788/OPE.20142211.2945.
将静电梳齿微驱动器与三族氮化物光栅集成
获得了利用静电梳齿微驱动器调节光栅周期的硅基三族氮化物光栅。首先
以硅基三族氮化物基片为基础
设计了微机电可调光栅
光栅的设计周期为1.1 m
设计线宽为0.8 m。然后
利用严格耦合波分析法研究了横向磁场模式下可调光栅的光学响应特性;研究显示改变光栅周期和占空比
光栅的谐振波峰出现了明显偏移。最后
介绍了结合电子束光刻、三族氮化物干法刻蚀和深硅刻蚀技术制备微机电可调三族氮化物光栅的方法。严格耦合波分析和实验表明:制备的微机电可调三族氮化物光栅具有良好的质量;在静电驱动器上施加电压
可将光栅的谐振波峰由1.345 m 调节至1.40 m
满足了利用微机电技术调节三族氮化物光栅光学响应特性的要求。
By integrating an electrostatic comb drive actuator with a Ⅲ-nitride grating
a Micro-electric-mechanic System (MEMS) tunable Ⅲ-nitride grating was obtianed on a silicon substrate to modulate the grating period. Firstly
the MEMS-tunable Ⅲ-nitride grating was designed on the basis of the Ⅲ-nitride-on-silicon substrate
in which the design values of grating period and the grating width are 1.1 m and 0.8 m
respectively. Then the Rigorous Coupled-wave Analysis (RCWA) method was used to analyze the optical responses of the Ⅲ-nitride grating under transverse magnetic modes. It shows that the resonance peak of the Ⅲ-nitride grating has a serious shift by changing the grating period and duty cycle. Finally
the MEMS-tunable Ⅲ-nitride grating was fabricated by combining an electron beam lithography
a Ⅲ-nitride dry etching and a deep silicon etching. Experimental results and rigorous coupled-wave analysis indicate that the fabricated MEMS-tunable Ⅲ-nitride grating has good quality and the shift of the resonant peaks is observed from 1.345 m to 1.40 m by applying a voltage on the electrostatic actuator. These results satisfy the requirement of modulating the optical responses of Ⅲ-nitride gratings by using MEMS technology.
CIMALLA V, PEZOLDT J, AMBACHER O. Group Ⅲ nitride and SiC based MEMS and NEMS: materials properties, technology and applications[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6386-6434.
NAKAMURA S, FASOL G. The Blue Laser Diode [M]. Berlin: Springer-Verlag, 1997.
CHUNG I S, MØRK J. Silicon-photonics light source realized by Ⅲ-V/Si-grating-mirror laser[J]. Applied Physics Letters, 2010, 97(15): 151113-151113-3.
HUANG M C Y, ZHOU Y, CHANG-HASNAIN C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics, 2007, 1(2): 119-122.
WANG Y, KANAMORI Y, YE J, et al.. Fabrication and characterization of nanoscale resonant gratings on thin silicon membrane[J]. Optics Express, 2009, 17(7): 4938-4943.
ROSENBLATT D, SHARON A, FRIESEM A A. Resonant grating waveguide structures[J]. Quantum Electronics, IEEE Journal of, 1997, 33(11): 2038-2059.
EGAWA T, MOKU T, ISHIKAWA H, et al.. Improved characteristics of blue and green InGaN-based light-emitting diodes on Si grown by metalorganic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2002, 41: 663-665.
EGAWA T, NAKADA N, ISHIKAWA H, et al.. GaN MESFETs on (111) Si substrate grown by MOCVD[J]. Electronics Letters, 2000, 36(21), 1816-1818.
WANG Y, WU T, TANAE T, et al.. The resonant Ⅲ-nitride grating reflector[J]. Journal of Micromechanics and Microengineering, 2011, 21(10): 105025.
SAMESHIMA H, TANAE T, HANE K. A GaN electromechanical tunable grating on Si substrate[J]. Photonics Technology Letters, IEEE, 2011, 23(5): 281-283.
MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. JOSA, 1981, 71(7): 811-818.
0
浏览量
536
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构