浏览全部资源
扫码关注微信
1. 北京航空航天大学 仪器科学与光电工程学院 北京,100191
2. 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室 北京,中国,100191
收稿日期:2014-03-14,
修回日期:2014-04-10,
纸质出版日期:2014-11-25
移动端阅览
房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J]. 光学精密工程, 2014,22(11): 2950-2958
FANG Jian-cheng, CHEN Meng, LI Hai-tao. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 2950-2958
房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J]. 光学精密工程, 2014,22(11): 2950-2958 DOI: 10.3788/OPE.20142211.2950.
FANG Jian-cheng, CHEN Meng, LI Hai-tao. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 2950-2958 DOI: 10.3788/OPE.20142211.2950.
为了抑制双框架磁悬浮控制力矩陀螺(DGMSCMG)框架伺服系统中谐波减速器固有的迟滞特性对系统精度的影响
提出了一种基于Preisach模型的谐波减速器迟滞特性建模方法。首先
使用一阶回转曲线法采集谐波减速器的柔轮输出力矩与扭转角
获得建立谐波减速器迟滞模型的实验数据
其中谐波减速器柔轮的输出力矩是在不使用力矩传感器的条件下用系统动力学模型估计得到的;然后
使用Preisach模型对谐波减速器柔轮输出力矩与扭转角迟滞关系进行建模;最后
采用将模型离散化的数字型实现方法辨识模型中的权重函数
并给出模型的离散递归算法使模型利于简易化编程与进一步的在线控制。实验结果显示
谐波减速器的迟滞模型误差不超过0.005
MSE值不超过(0.000 83%)。结果显示了所述建模方法的正确性和实用性。
To counteract the hysteresis introduced by a harmonic drive and to improve the precision of a Double Gimbal Magnetically Suspended Control Moment Gyroscope (DGMSCMG) gimbal system
a modeling method of hysteresis characteristics of the harmonic drive was proposed. Firtly
the first-order reversal curve method was used to capture the outputting torque of the flexible gear and the torsion angle of the harmonic drive and to obtain the data to establish the hysteresis model of the harmonic drive
in which the outputting torque of the flexible gear was estimated by a system dynamic model instead of a direct measurement from the torque sensor. Then
the Preisach model was used to establish the hysteresis relationship between the outputting torque of the flexible gear and the torsion angle of the harmonic drive. Finally
the modeling was discretized and its weighting function was then well mapped by applying mathematical implementation.Furthermore
a discrete recursive algorithm of the model was also provided for simply programming and further on-line controlling. Results of the carefully designed experiments conducted on the DGMSCMG show that the deviation between calculated and measured torsion angles is limited within a 0.005 range
and the MSE value is under (0.000 83%). These results show that the model well predicts the hysteresis of the system.
FANG J CH, REN Y. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1133-1144.
魏彤, 郭蕊. 自适应卡尔曼滤波在无刷直流电机系统辨识中的应用[J]. 光学精密工程, 2012, 20(10): 2308-2313. WEI T, GUO R. Application of adaptive Kalman filtering in system identification of brushless DC motor[J]. Opt. Precision Eng., 2012, 20(10): 2308-2313. (in Chinese)
李海涛, 房建成. 基于扩张状态观测器的DGMSCMG框架伺服系统振动抑制方法[J]. 航空学报, 2010, 31(6): 1213-1219. LI H T, FANG J CH. Study on system vibration suppression method based on ESO used in gimbal servo system of DGMSCMG[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1213-1219. (in Chinese)
FANG J CH, ZHENG SH Q, HAN B CH. AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 32-43.
FANG J CH, LI H T, HAN B CH. Torque ripple reduction in BLDC torque motor with nonideal back EMF[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4630-4637.
徐向波, 房建成, 李海涛, 等.. 控制力矩陀螺框架系统的谐振抑制与精度控制[J]. 光学精密工程, 2012, 20(2): 305-311. XU X B, FANG J CH, LI H T, et al.. Resonance elimination and precision control of CMG gimbal system[J]. Opt. Precision Eng., 2012, 20(2): 305-311.(in Chinese)
韩邦成, 马纪军, 李海涛. 谐波减速器的非线性摩擦建模及补偿[J]. 光学精密工程, 2011, 19(5): 1095-1103. HAN B CH, MA J J, LI H T. Modeling and compensation of nonlinear friction in harmonic driver[J]. Opt. Precision Eng., 2011, 19(5): 1095-1103.(in Chinese)
TUTTLE T D, SEERING W. Modeling a harmonic drive gear transmission[C]. 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, 1993: 624-629.
SEYFFERTH W, MAGHZALL A J, ANGELES J. Nonlinear modeling and parameter identification of harmonic drive robotic transmissions[C]. 1995 IEEE International Conference on Robotics and Automation, Nagoya, 1995: 3027-3032.
TAGHIRAD H D, BELANGER P R. An experimental study on modeling and identification of harmonic drive systems[C]. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, 1996: 4725-4730.
DHAOUADI R, GHORBEL F H, GANDHI P S. A new dynamic model of hysteresis in harmonic drives[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1165-1171.
潘锋, 董海军, 孙敬. 谐波齿轮传动中柔轮扭转变形产生的回差分析[J]. 机械科学与技术, 2009, 28(6): 815-818. PAN F, DONG H J, SUN J. Analysis of backlash from flexspline torsional deformation in harmonic gearing[J]. Mechanical Science and Technology, 2009, 28(6): 815-818.(in Chinese)
李俊阳. 空间润滑谐波减速器失效机理及其加速寿命试验方法研究[D]. 重庆: 重庆大学, 2012. LI J Y. Failure mechanism theory and accelerated life testing method research for space lubrication harmonic drive[D]. Chongqing: Chongqing University, 2012.(in Chinese)
PREISSNER C, ROYSTON T J, SHU D. A high-fidelity harmonic drive model[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(1): 011002.
KREJ I P, O'KANE J P, POKROVSKII A, et al.. Properties of solutions to a class of differential models incorporating Preisach hysteresis operator[J]. Dynamics and Bifurcations of Nonsmooth Systems, 2012, 241(22):2010-2028.
IVANYI A, IVANYI P, IVANYI M M, et al.. Hysteresis in structural dynamics[C]. 8th International Symposium on Hysteresis Modeling and Micromagnetics, 2012, 407(9):1412-1414.
LEE J J, KIM Y K, RHYU S H, et al.. Hysteresis torque analysis of permanent magnet motors using Preisach model[J]. IEEE Transactions on Magnetics, 2012, 48(2):935-938.
MAYERGOYZ I D. Mathematical Models of Hysteresis[M]. New York: Springer, 1991.
程建华. 基于Preisach模型的超磁致伸缩驱动器迟滞建模与位移控制研究[D]. 天津: 河北工业大学, 2008. CHENG J H. Research of Hysteresis Modeling & Displacement Control for Giant Magetostrictive Actuator Based on Preisach Model[D].Tianjin: Hebei University of Technology, 2008.(in Chinese)
陈远晟, 裘进浩, 季宏丽, 等. 基于双曲函数的Preisach类迟滞非线性建模与逆控制[J]. 光学精密工程, 2013, 21(5):1205-1212. CHEN Y CH, QIU J H, JI H L, et al.. Modeling and inverse control of Preisach type hysteresis nonlinearity using hyperbola functions[J].Opt. Precision Eng., 2013, 21(5): 1205-1212. (in Chinese)
0
浏览量
666
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构