浏览全部资源
扫码关注微信
1. 太原理工大学 新型传感器与智能控制教育部重点实验室,山西 太原,030024
2. 太原理工大学 信息工程学院 微纳系统研究中心,山西 太原,030024
3. 太原理工大学 物理与光电工程学院,山西 太原,030024
收稿日期:2014-01-23,
修回日期:2014-03-14,
纸质出版日期:2014-11-25
移动端阅览
程鹏, 高爽, 张文栋等. 基于阻抗响应的磁弹性传感器共振频率测量系统[J]. 光学精密工程, 2014,22(11): 3012-3018
CHENG Peng, GAO Shuang, ZHANG Wen-dong etc. Resonant frequency measurement system for magnetoelastic sensor based on impedance response[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3012-3018
程鹏, 高爽, 张文栋等. 基于阻抗响应的磁弹性传感器共振频率测量系统[J]. 光学精密工程, 2014,22(11): 3012-3018 DOI: 10.3788/OPE.20142211.3012.
CHENG Peng, GAO Shuang, ZHANG Wen-dong etc. Resonant frequency measurement system for magnetoelastic sensor based on impedance response[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3012-3018 DOI: 10.3788/OPE.20142211.3012.
建立了一套基于阻抗响应的磁弹性传感器共振频率测量系统
研究了该系统的共振频率测量原理
等效电路模型和磁弹性传感器共振频率测量电路。首先
介绍通过磁弹性传感器阻抗变化获取其共振频率的原理;根据磁弹性传感器对线圈阻抗的影响建立了磁弹性传感器等效模型电路。然后
设计了一种基于片上系统的阻抗测量电路。最后
验证了该磁弹性传感器共振频率测量系统的可行性和可靠性。实验结果表明:该系统测得的频率分辨率小于0.1 Hz
精度为0.5%。与传统网络分析仪系统相比
测量同一Metglas 2826MB材料所得共振频率仅相差60 Hz;测量两个长度不同的Metglas 2826MB材料所得共振频率比为0.74
与理论计算值0.8相近。另外
该系统也可用于磁弹性传感器在不同介质中的共振频率测量。得到的结果显示:设计的测量系统完全可取代昂贵庞大的网络分析仪
具有高度集成
强抗干扰
低成本和便携式测量等优点。
A resonant frequency measurement system for a magnetoelastic (ME) sensor based on the impedance response was established and the measuring mechanism
equivalent circuit model and the measuring circuit of the ME sensor were researched. First
the measurement mechanism of resonance frequency was introduced based on the impedance change of the ME sensor. The equivalent model circuit of the ME sensor was established according to the affect of the ME sensor on a coil impedance. Then an impedance measurement circuit based on system-on-chip was designed. Finally
the experiments were performed to verify the feasibility and reliability of the resonant frequency measurement system for the ME sensor. Experimental results indicate that the frequency resolution and the accuracy of the system are less than 0.1 Hz
and 0.5% respectively. Moreover
the deviation between the resonant frequency measurement system and the traditional network analyzer platform is 60 Hz for a same Metglas 2826MB material; the resonance frequency radio of two Metglas 2826MB materials with different lengths is 0.74
similar with the theoretical value of 0.8. The resonant frequency measurement system works well in different media
which means that the system can replace an expensive and large network analyzer and is characterized by higher integration
stronger anti-interference
lower costs and portable measurement.
GRIMES C A, ROY S C, RANI S, et al.. Theory, instrumentation and applications of magnetoelastic resonance sensors: a review.[J]. Sensors, 2011, 11(3): 2809-44.
杨斌堂,赵寅,彭志科,等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制研究[J]. 光学精密工程,2013,21(1):124-130. YANG B T,ZHAO Y,PENG ZH K, et al.. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA[J]. Opt. Precision Eng., 2013,21(1):124-130. (in Chinese)
Ausanio G, Barone A C, Hison C, et al.. Magnetoelastic sensor application in civil buildings monitoring[J]. Sensors and Actuators A: Physical, 2005, 123-124: 290-295.
Park M K, Park J W, Wikle H C, et al.. Evaluation of phage-based magnetoelastic biosensors for direct detection of Salmonella Typhimurium on spinach leaves[J]. Sensors and Actuators B: Chemical, 2013, 176: 1134-1140.
SHEN W, MATHISON L C, PETRENKO V A, et al.. A pulse system for spectrum analysis of magnetoelastic biosensors[J]. Applied Physics Letters, 2010, 96(16): 163502.
SHEN W, ZHANG Z, HORIKAWA S, et al.. Time domain characterization of magnetoelastic sensors: A pulse method for resonance frequency determination.[J]. The Review of Scientific Instruments, 2010, 81(8): 084702.
ZENG K F, PAULOSE M, ONG K G, et al.. Frequency-domain characterization of magnetoelastic sensors: a microcontroller-based instrument for spectrum analysis using a threshold-crossing counting technique[J]. Sensors and Actuators A: Physical, 2005, 121(1): 66-71.
ZENG K F, ONG K G, YANG X, et al.. Board level integrated microsystem design and associated technique for impedance analysis of resonator sensors[J]. Sensor Letters, 2006, 4: 388-397.
ZHANG K W. Development of portable magnetostrictive biosensor system[D]. USA:Auburn University,2010.
MUNGLE C S, ROY S C, GRIMES C A. The equation of motion, impedance, and equivalent circuit model for a magnetoelastic resonance sensor[J]. Sensor Letters, 2008, 6(3): 421-427.
CHAI Y, WIKLE H C, WANG Z, et al.. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor[J]. Journal of Applied Physics, 2013, 114(10): 104504.
贾振元,王晓煜,王福吉. 超磁致伸缩微位移执行器的矢量阻抗分析模型[J]. 光学精密工程,2008,16(5):870-877. JIA ZH Y,WANG X Y,WANG F J. Vector impedance analysis model for giant magnetostrictive micro2displacement actuator[J].Opt. Precision Eng., 2008,16(5):870-877. (in Chinese)
王雷;谭久彬;刘玉涛. 超磁致伸缩体内涡流效应有限元分析[J]. 光学精密工程,2006,14(3):445-449. WANG L,TAN J B,LIU Y T. Analysis on eddy current effect in giant magnetostriction with finite element method[J]. Opt. Precision Eng., 2006,14(3):445-449. (in Chinese)
0
浏览量
460
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构