浏览全部资源
扫码关注微信
1. 中国科学院 电子学研究所 传感器国家重点实验室 北京,100190
2. 解放军理工大学 气象与海洋学院,江苏 南京,211101
收稿日期:2014-03-05,
修回日期:2014-04-17,
纸质出版日期:2014-11-25
移动端阅览
杜利东, 赵湛, 方震等. 用电镀铜锡合金薄膜实现圆片级气密封装[J]. 光学精密工程, 2014,22(11): 3044-3049
DU Li-dong, ZHAO Zhan, FANG Zhen etc. Wafer level hermetic packaging based on electroplating Cu-Sn alloy films[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3044-3049
杜利东, 赵湛, 方震等. 用电镀铜锡合金薄膜实现圆片级气密封装[J]. 光学精密工程, 2014,22(11): 3044-3049 DOI: 10.3788/OPE.20142211.3044.
DU Li-dong, ZHAO Zhan, FANG Zhen etc. Wafer level hermetic packaging based on electroplating Cu-Sn alloy films[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3044-3049 DOI: 10.3788/OPE.20142211.3044.
开发了一种基于电镀铜锡合金薄膜的绝压气压传感器圆片级气密封装技术以降低常规的基于阳极键合气密封装技术的成本及难度。通过实验确定了铜锡合金薄膜的电镀参数
实现了结构参数为:Cr/Cu/Sn (30 nm/4 m/4 m)的铜锡合金薄膜;通过共晶键合实验确定圆片级气密封装的参数
进行了基于铜锡材料的气密封装温度实验。通过比较各种不同温度下气密封装的结果
确定了完成圆片级气密封装的条件为:静态压力0.02 MPa
加热温度280
保持20 min。最后
对气密封装效果进行X-射线衍射谱(XRD)、X射线分析、剪切力以及氦气泄露分析等实验研究。XRD分析显示:在键合界面出现了Cu
3
Sn相
证明形成了很好的键合;X射线分析表明封装面无明显孔洞;剪切力分析给出平均键合强度为9.32 MPa
氦气泄露分析则显示泄露很小。得到的结果表明:基于电镀铜锡合金薄膜可以很好地实现绝压气压传感器的圆片级气密封装。
A kind of wafer level hermetic packaging based on electroplating Cu-Sn alloy films was developed to reduce the cost and difficulty of traditional hermetic packaging based on anodic bonding。The electroplating parameters of Cu-Sn alloy films were determined by the electroplating experiments
and the structure of alloy film is Cr/Cu/Sn (30 nm/4 m/4 m). Then
the hermetic packaging parameter was determined by eutectic experiments. After comparing the hermetic packaging results at different temperatures
the wafer-level packaging was achieved well on a temperature of 280℃
holding time of 20 min and a static pressure of 0.02 MPa. Finally
the quality of hermetic packaging was tested by X-ray Diffractometry(XRD)
X-ray analysis
a shear stress analysis and a helium leakage rate test. The XRD experiment shows that the bonding is formed because that there are phase Cu
3
Sn in bonding layer. The hermetic quality is verified by the X-ray analysis and the helium leak rate test. It is suggested that no obvious holes are occurred around the hermetic ring and most of the cells have good hermetic bond quality. Moreover
the average shear strength is 9.32 MPa by shear stress test. These results demonstrate that the wafer-level hermetic packaging has been achieved well based on electroplating Cu-Sn alloy films.
NIKLAUS F, ANDERSSON H, ENOKSSON P, et al.. Low temperature full wafer adhesive bonding of structured wafers[J]. Sensors and Actuators A: Physical, 2001, 92: 235-241.
SANTERI T, SAMI F. Free-standing SU-8 microfluidic chips by adhesive bonding and release etching[J]. Sensors and Actuators A: Physical, 2005, 120:408-41.
PANG C, ZHAO Z, DU L D, et al.. Adhesive bonding with Su-8 in a vacuum for capacitive pressure sensors[J]. Sensors and Actuators A: Physical, 2008, 147: 672-676.
ZHANG W Y, LABUKAS J P, TATICLUCIC S, et al.. Novel room-temperature first-level packaging process for microscale devices[J]. Sensors and Actuators A: Physical, 2005, 123-124: 646-65.
SUN W, IVEY D G. Microstructural study of co-electroplated Au/Sn alloy[J]. Journal of Materials Science, 2001, 36:757-766.
HE A Q, LIU Q, IVEY D G. Development of stable, non-cyanide solutions for electroplating Au-Sn alloy films[J]. Journal of Materials Science: Materials in Electronics, 2006, 17: 63-70.
KIM J Y, YU J, LEE J H, et al.. The Effects of Electroplating Parameters on the Composition and Morphology of Sn-Ag Solder[J]. Journal of Electronic Materials, 2004, 33(12):1459-1464.
TSUTOMU S, MASAMOTO T, YASUHIDE O. Intermetallic compound formation between lead-free solders (Sn) and Cu or Ni electrodes[J]. Materials Letters, 2007, 61: 2093-2095.
KAZUO Y, SHUICHI K, KENGO M, et al.. Development of Cu-Sn alloy plating with superior excellent sliding characteristics and corrosion resistance[J]. Furukawa Review, 2011, 40: 8-11.
MOTOHIRO Y, KOTA K, MASATAKA H, et al.. A superelastic nanocrystalline Cu-Sn alloy thin film processed by electroplating[J]. Materials Letters, 2008, 62: 4473-4475.
YANG M, LI M Y, WANG L, et al.. Growth behavior of Cu6Sn5 grains formed at a Sn3.5Ag/Cu interface[J]. Materials Letters, 2011, 65: 1506-1509.
HIDEAKI T, TETSURO N, KAZUHIRO N. Epitaxial growth of Cu6Sn5 formed at Sn-based lead-free solder/non-textured polycrystalline Cu plate interface[J]. Materials Letters, 2009, 63: 2687-2690.
RONG Y B, CAI J, WANG S D, et al.. Low Temperature Cu-Sn Bonding by Isothermal Solidification Technology[C]. International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Beijing, 2009:.96-98.
CHENG R, JIANG K W,L X X. Enhanced solder joint bonding strength of electronic packaging with electrowetting effect[J]. Microelectronic Engineering, 2011, 88: 3244-3248.
YU D Q. Development of reliable low temperature wafer level hermetic bonding using composite seal joint[J]. Microelectronics Reliability, 2012, 52: 589-594.
0
浏览量
273
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构