浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 南海海洋研究所, 热带海洋环境国家重点实验室,广东 广州,510301
3. 环境保护部 华南环境科学研究所,广东 广州,510655
收稿日期:2014-04-09,
修回日期:2014-05-19,
纸质出版日期:2014-11-25
移动端阅览
赵文静, 曹文熙, 王桂芬等. 南海海域MODIS-Aqua叶绿素浓度产品的精度对比和区域性算法修正[J]. 光学精密工程, 2014,22(11): 3081-3090
ZHAO Wen-jing, CAO Wen-xi, WANG Gui-fen etc. Comparison of chlorophyll products derived from MODIS-Aqua and modification of operational algorithms in the South China Sea[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3081-3090
赵文静, 曹文熙, 王桂芬等. 南海海域MODIS-Aqua叶绿素浓度产品的精度对比和区域性算法修正[J]. 光学精密工程, 2014,22(11): 3081-3090 DOI: 10.3788/OPE.20142211.3081.
ZHAO Wen-jing, CAO Wen-xi, WANG Gui-fen etc. Comparison of chlorophyll products derived from MODIS-Aqua and modification of operational algorithms in the South China Sea[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3081-3090 DOI: 10.3788/OPE.20142211.3081.
利用2004~2012年在南海获得的9个航次的实测
Chl-a
数据
采用NASA标准业务化算法OC3和针对低
Chl-a
水体所发展的最新算法OCI反演获得了相应的MODIS-Aqua
Chl-a
产品。通过建立实测与遥感产品的时空匹配数据对
开展了
Chl-a
产品的适用性评估
并对比分析了上述两种算法的性能。在此基础上
利用南海实测遥感反射率(
R
rs
(
λ
))和MODIS-Aqua
R
rs
(
λ
)产品以及相应实测
Chl-a
的匹配数据集
分别对算法OC3和OCI进行了区域性修正。结果显示:基于算法OC3和OCI反演所得的MODIS-Aqua
Chl-a
产品值均高估了实测值
平均绝对误差(APD) 的精度分别为56.30%和42.58%
且算法OCI可明显改善低
Chl-a
水体(
<
0.25 mg·m
-3
)的反演精度;采用南海MODIS-Aqua
R
rs
(
λ
)产品与实测
Chl-a
匹配数据集(
N
=82)修正后的区域性算法NOC3和NOCI的精度均有不同程度提高
APD精度分别为37.85%和36.74%;采用现场实测
R
rs
(
λ
)与
Chl-a
匹配数据集(
N
=123)进行区域性修正后的算法INOC3和INOCI的APD精度分别为36.61%和37.79%
上述两种方案精度较为接近。因此
对于南海海域而言
算法的区域性修正对于改善MODIS-Aqua
Chl-a
产品精度非常重要。
The performance of MODIS-Aqua
Chl-a
derived from the standard OC3 band-ratio algorithm and a new band-difference OCI algorithm are compared in the South China Sea(SCS) from the MODIS instrument on the Aqua satellite with nine cruises of chlorophyll measurements collected from 2004 to 2012. Then
the algorithms of OC3 and OCI were corrected by the parameter adjustments based on the satellite
in situ
remote sensing reflectance (
R
rs
(
λ
)) and corresponding
in situ
Chl-a
pairs respectively. The results show that MODIS-Aqua
Chl-a
products derived from OC3 and OCI algorithms overestimate the
in situ
data
with the Average Relative Error(APD) of 59.41% and 44.17%
respectively. However
the algorithm OCI significantly improves the retrieval accuracy for low chlorophyll concentration waters(
<
0.25 mg·m
-3
). After regional correction by MODIS-Aqua
R
rs
(
λ
) and corresponding
Chl-a
pairs
the algorithms are likely to fare better
and the modified algorithm NOC3 and NOCI show their APD accuracies are 37.85% and 36.74%
respectively. Moreover
the algorithms NOC3 and NOCI modified by
in situ
R
rs
(
λ
) and corresponding
Chl-a
pairs also give a good estimateion with the APD accuracy of 36.61% and 37.79%. Therefore
it suggests that to conduct the regional correction for the operational algorithms is important to improve the accuracy of
Chl-a
estimation in the SCS.
SATHYENDRANATH S. Remote sensing of ocean color in coastal, and other optically complex waters[J]. IOCCG Report, 2000.
HOOKER S, MCCLAIN C. The calibration and validation of SeaWiFS data[J]. Progress in Oceanography, 2000, 45(3): 427-465.
BAILEY S W, WERDELL P J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products[J]. Remote Sensing of Environment, 2006, 102(1): 12-23.
魏新国,王清龙,李健,等. 星敏感器和遥感相机主光轴交联角的在轨校验[J]. 光学精密工程, 2013, 21(2): 274-280. WEI X G, WANG Q L, LI J, et al.. On-orbit calibration for cross-angle between optical axes of star sensor and remote sensing camera[J]. Opt. Precision Eng., 2013, 21(2): 274-280.(in Chinese)
王锐,王淑荣,郭劲,等. 高精度紫外标准探测器的定标[J]. 光学精密工程, 2012, 20(8): 1696-1703. WANG R, WANG SH R, GUO J, et al.. Calibration of high accuracy UV standard detector[J]. Opt. Precision Eng., 2012, 20(8): 1696-1703.(in Chinese)
智喜洋,张伟,候晴宇,等. 影响测绘相机匹配精度的辐射指标量化[J]. 光学精密工程, 2012, 20(2): 387-394. ZHI X Y, ZHANG W, HOU Q Y, et al.. Quantification for radiometric specifications impacting on matching accuracy of mapping camera[J]. Opt. Precision Eng., 2012, 20(2): 387-394.(in Chinese)
ANTOINE D, D'ORTENZIO F, HOOKER S B, et al.. Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project)[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, C7:113.
ARMSTRONG R A, GILBES F, GUERRERO R, et al.. Validation of SeaWiFS-derived chlorophyll for the Rio de la Plata Estuary and adjacent waters[J]. International Journal of Remote Sensing, 2004, 25(7-8): 1501-1505.
BINDING C E, GREEBERG T A, JEROMEL J H, et al.. An assessment of MERIS algal products during an intense bloom in the lake of Woods[J]. Journal of Plankton Research, 33(5): 798-803.
CUI T W, ZHANG J, GROOM S, et al.. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters[J]. Remote Sensing of Environment, 2010, 114(10): 2326-2336.
MELIN F, ZIBORDI G, BERTHON J F, et al... Uncertainties in remote sensing reflectance from MODIS-Terra[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 432-436.
QING S, ZHANG J, CUI T, et al. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea[J]. Remote Sensing of Environment, 2013, 136, 117-125.
ZHAO J, BARNES B, MELO N, et al.. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters[J]. Remote Sensing of Environment, 2013,131, 38-50.
ZHAO W J, WANG G Q, CAO W X, et al.. Assessment of SeaWiFS, MODIS and MERIS ocean-color products in the South China Sea[J]. International Journal of Remote Sensing, 2013(accepted).
ZIBORDI G, MELIN F, BERTHON J F, et al.. Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site[J]. Geophysical Research Letters, 2006, 33(6):L06617-4.
ZHANG C Y, HU C M SHANG S L, et al.. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China[J]. Remote Sensing of Environment, 2006, 102(3): 250-263.
TANG S L, CHEN C Q, ZHAN H G, et al.. An appraisal of surface chlorophyll estimation by satellite remote sensing in the South China Sea[J]. International Journal of Remote Sensing, 2008, 29(21): 6217-6226.
孙凌,王晓梅,郭茂华,等. MODIS水色产品在黄东海域的真实性检验[J]. 湖泊科学, 2009, 21(2): 298-306. SUN L, WANG X M, GUO M H, et al.. MODIS ocean color product validation around the Yellow Sea and East China Sea[J]. Journal of Lake Science, 2009, 21(2) : 143-148. (in Chinese)
崔廷伟. 渤海生物光学性质与水色遥感反演[D]. 青岛: 中国海洋大学, 2006. CUI T W. Bio-optical properties and ocean color inversion of the Bohai Sea [D].Qingdao: Ocean university of China, 2006. (in Chinese)
SHANG S, DONG Q, HU C, et al.. On the consistency of MODIS chlorophyll-a products in the northern South China Sea[J]. Biogeosciences, 2014, 11(2): 269-280.
HU C, LEE Z, FRANZ B. Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three band reflectance difference[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117.
PARSONS, T R, MAITA Y, et al.. A Manual of chemical and biological methods for seawater analysis[J]. Oxford: Pergamon Press, 1984, 1-173.
CAO W, YANG Y, LIU S, et al.. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China[J]. Progress in Natural Science, 2005, 15(4): 342-350.
BREWIN R J, RAITSOS D E, PRADHAN Y, et al. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence[J]. Remote Sensing of Environment, 2013, 136: 218-224.
O'REILLY J E, MARITORENA S, MITCHELL B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans (1978-2012), 1998, 103(C11): 24937-24953.
O'REILLY J E, MARITORENA S, SIEGEL D A, et al. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4[J]. SeaWiFS Postlaunch Calibration and Validation Analyses, 2000, Part, 3: 9-23.
GORDON H R, WANG M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm[J]. Applied optics, 1994, 33(3): 443-452.
WANG M. A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure[J]. International Journal of Remote Sensing, 2005, 26(24): 5651-5663.
LIN J F, CAO W X, WANG G F, et al.. An approach for determining the contributions of phytoplankton, colored organic material, and non-algal particles to the total spectral absorption[J]. Applied Optics, 2013, 52(18): 4249-4257.
WANG G F, ZHOU W, CAO W X, et al.. Variation of particulate organic carbon and its relationship with bio-optical properties during a phytoplankton bloom in the Pearl River estuary[J]. Marine Pollution Bulletin, 2011, 62:1939-1947.
WANG G Q, ZHOU W, WANG G F, et al.. Phytoplankton size class derived from phytoplankton absorption and chlorophyll-a concentrations in the northern South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4):750-761.
ZHOU W, WANG G F, SUN Z H, et al.. Variations in the optical scattering properties of phytoplankton cultures[J]. Optics Express, 2012, 20(10):11189-11206.
0
浏览量
440
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构