浏览全部资源
扫码关注微信
1. 华南理工大学 自动化科学与工程学院,广东 广州,510640
2. 华南理工大学 精密电子制造装备教育部工程研究中心,广东 广州,510640
3. 广东技术师范学院 自动化学院,广东 广州,510665
收稿日期:2014-05-23,
修回日期:2014-06-23,
纸质出版日期:2014-11-25
移动端阅览
高红霞, 吴丽璇, 徐寒等. 微焦点X射线图像乘性加性混合噪声的去除[J]. 光学精密工程, 2014,22(11): 3100-3113
GAO Hong-xia, WU Li-xuan, XU Han etc. Denoising method of micro-focus X-ray images corrupted with mixed multiplicative and additive noises[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3100-3113
高红霞, 吴丽璇, 徐寒等. 微焦点X射线图像乘性加性混合噪声的去除[J]. 光学精密工程, 2014,22(11): 3100-3113 DOI: 10.3788/OPE.20142211.3100.
GAO Hong-xia, WU Li-xuan, XU Han etc. Denoising method of micro-focus X-ray images corrupted with mixed multiplicative and additive noises[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3100-3113 DOI: 10.3788/OPE.20142211.3100.
考虑微焦点X射线仪成像信噪比低
混合噪声污染严重等问题
提出了一种乘性、加性混合噪声去除方法。首先
建立了含乘性、加性混合噪声的图像模型;其次
基于总变分和稀疏表示原理分别构造了滤除加性噪声和乘性噪声的目标函数;最后
应用显式差分算法和梯度投影算法分步滤除加性噪声和乘性噪声。实验结果显示
与总变分去加性噪声方法相比
该方法处理后的图像平滑区域均值与标准差比(MSR)平均提升了10.9%
细节区域拉普拉斯梯度模(LS)平均提升了15.6%。这些结果表明:本文算法不仅有效滤除了微焦点X射线图像的混合噪声
并且较好地保留了图像细节特征
能够满足集成电路内部缺陷检测对图像平滑度和细节清晰度的要求。
In consideration of the lower imaging Signal to Noise Ratio(SNR) and serious mixed noise of a micro-focus X-ray inspector
a denoising method was proposed for the images corrupted with mixed multiplicative noise and additive noise. Firstly
an image model was established to represent the micro-focus X-ray images with mixed multiplicative and additive noises. Then
to remove the mixed noises
the objective functions were proposed based on the principle of total variation and sparse representation. Finally
the multiplicative noise and the additive noise were removed by explicit difference method and gradient projection in steps. Experiment results show that the proposed method enhances the Mean to Standard deviation Ratio(MSR) of the images by 10.9% in smooth areas
the Laplacian Sum(LS) by 15.6% in detail areas as compared with total variation algorithm for the additive noise model. The experiments demonstrate that the proposed method not only removes the mixed noises in X-ray image but also retains the details of the image edge. It meets the requirements of integrated circuit detection for image smoothness and detail definition.
李玉彬, 李向良, 姜燕梅,等. 微焦点X射线CT及其在无损检测中的应用[J]. 无损检测,1999, 21(12): 549-552 LI Y B, LI X L, JIANG Y M, et al.. Micro-focus X-ray CT and its application in nondestructive testing[J]. Nondestructive Testing, 1999, 21(12): 549-552. (in Chinese)
王世伟. 医学影像实用技术教程[M]. 北京:中国铁道出版社, 2007. WANG SH W. Medical Imaging Technology Tutorials[M]. Beijing: China Railway Press, 2007. (in Chinese)
WANG J, LIANG Z, LU H, et al.. Recent development of low-dose X-ray cone-beam computed tomography[J]. Current Medical Imaging Reviews(CMIR) Journal, 2010, 6(2): 72- 81.
LU H B, HSIAO I T, LI X, et al.. Noise properties of low-dose CT projections and noise treatment by scale transformation[C]. 2001 IEEE Nuclear Science Symposium Conference Record, San Diego: IEEE, 2002:1662- 1666.
LA P J, BILL MIRE D M. Reduction of noise-induced streak artifacts in X-ray computed tomography through spline based penalized likelihood sonogram smoothing[J]. IEEE Trans. Med. Image, 2005, 24(1): 105-111.
WANG J, LI T, LU H, et al.. Penalized weighted least-squares approach to sonogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Trans. Med. Image, 2006, 25(10): 1272-283.
邓承志, 刘娟娟, 汪胜前,等. 保留结构特征的稀疏性正则化图像修复[J]. 光学精密工程, 2013,21(7):1906-1913. DENG CH ZH, JIU J J, WANG SH Q, et al.. Feature retained image inpainting based on sparsity regularization[J]. Opt. Precision Eng., 2013,21(7):1906-1913. (in Chinese)
李伟红, 董亚莉, 唐述. 多范数混合约束的正则化图像盲复原[J]. 光学精密工程. 2013, 21(5):1357-1364. LI W H, DONG Y L, TANG SH. Regularized blind image restoration based on multi-norm hybrid constraints[J]. Opt. Precision Eng., 2013, 21(5):1357-1364. (in Chinese)
张元科, 张军英, 卢虹冰. 基于EM算法的低剂量CT图像去噪[J]. 电子学报, 2012, 40(1): 27-34. ZHANG Y K, ZHANG J Y, LU H B. Noise Reduction of low-dose CT sinograms based on EM algorithm[J]. Acta Electronica Sinica, 2012, 40(1): 27-34. (in Chinese)
IRRERA P, BLOCH I, DELPLANQUE M. A denoising method for whole-body low-dose X-ray images with adaptable parameter control[C]. 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, 2013:1240-1243.
RUDIN L, LIONS P L, OSHER S. Multiplicative Denoising and Deblurring: Theory and Algorithms[M]. New York: Springer New York, 2003:103-119.
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection to compressed sensing and other inverse problem[J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586-598.
吴俊, 汪源源, 陈悦, 等. 基于同质区域自动选取的各向异性扩散超声图像去噪[J]. 光学精密工程, 2014,22(5): 1312-1321. WU J, WANG Y Y, CHEN Y, et al.. Speckle reduction of ultrasound images with anisotropic diffusion based on homogeneous region automatic selection[J]. Opt. Precision Eng., 2014,22(5): 1312-1321. (in Chinese)
WANG L, LU J M, LI Y Q, et al.. Noise removal for medical X-ray images in multiwavelet domain[C]. 2006 International Symposium on Intelligent Signal Processing and Communication Systems, Japan, 2006:594-597.
唐新建. 图像复原正则化方法研究[D]. 武汉:华中科技大学, 2006. TANG X J. Image restoration research based on Regularization method[D]. Wuhan: Huazhong University of Science and Technology, 2006.
0
浏览量
555
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构