浏览全部资源
扫码关注微信
1. 西北工业大学 电子信息学院,陕西 西安,710072
2. 铜陵学院 电气工程系,安徽 铜陵,244000
收稿日期:2014-06-25,
修回日期:2014-08-19,
纸质出版日期:2014-11-25
移动端阅览
王忠良, 冯燕, 王丽. 推扫式高光谱谱间压缩感知成像与重构[J]. 光学精密工程, 2014,22(11): 3129-3135
WANG Zhong-liang, FENG Yan, WANG Li. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3129-3135
王忠良, 冯燕, 王丽. 推扫式高光谱谱间压缩感知成像与重构[J]. 光学精密工程, 2014,22(11): 3129-3135 DOI: 10.3788/OPE.20142211.3129.
WANG Zhong-liang, FENG Yan, WANG Li. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3129-3135 DOI: 10.3788/OPE.20142211.3129.
提出一种推扫式谱间压缩采样的高光谱成像系统
用于实现高光谱图像的压缩感知成像
并对该系统成像的重构算法进行了研究。在图像采集阶段
采用棱镜对地面成像行的像素进行谱带分离
然后利用数字微镜器件实现谱带的线性编码
通过柱面透镜完成编码谱带的叠加。压缩采样数据重构时
不像传统的压缩感知重构方法那样直接重构高光谱数据
而是利用线性光谱库混合模型将重构高光谱数据转换成重构丰度系数矩阵
采用交替方向乘子法求解丰度的优化问题
再根据重构的丰度和高光谱库恢复原数据。与标准压缩感知重构算法的对比实验表明
该方法在压缩采样数据为总数据的20%时
重构的平均峰值信噪比比标准压缩感知提高了18 dB。所设计的成像系统采样方式简单
可应用于星载或机载的高光谱压缩感知成像。
A pushbroom spectral imaging system based on compressive sampling was established to realize compressive sensing imaging for a hyperspectral image. An image reconstruction algorithm for this system was investigated. In the image acquisition stage
the pixels of ground imaging line were separated along spectral direction by a prism. Then
the linear encoding between the spectral bands was realized by a digital micro-mirror device. Finally
the encoded spectral bands were summed by a cylindrical lens. In the reconstruction of the compressive sampled data
the traditional compressive sensing reconstruction methods which recover hyperspectral data directly were abandoned. The liner spectral library mixed models were used to convert the reconstructed hyperspectral data into reconstructed abundance fraction matrix
the alternating direction method of multipliers was used to solve the optimizing problem of abundance
and the data was recovered by using the reconstructed abundance and spectral library. The comparison experiment between standard compressive sensing reconstruction and our algorithm shows that the reconstructed average peak signal noise rate of our algorithm is improved about 18 dB than that of the standard compressive sensing when the used data are 20% that of total data. The system is suitable for the spaceborne airborne hyperspectral compressive sensing imaging for its simple sampling.
孙朗, 胡炳樑, 王爽, 等. 压缩采样光谱调制技术研究[J]. 光子学报, 2013, 42(8): 912-915. SUN L, HU B L, WANG SH,et al.. Compressive sampling spectral modulated technique[J]. Acta Photonica Sinica, 2013, 42(8): 912-915. (in Chinese)
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
陈涛, 李正炜, 王建立, 等. 应用压缩传感理论的单像素相机成像系统[J]. 光学精密工程, 2012, 20(11):2523-2530. CHEN T, LI ZH W, WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing[J]. Opt. Precision Eng., 2012, 20(11):2523-2530. (in Chinese)
杨宏成, 高欣, 张涛. 应用投影收缩的压缩感知锥束CT短扫描重建[J]. 光学精密工程, 2014, 22(3): 770-778. YANG H CH, GAO X, ZHANG T. Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction[J]. Opt. Precision Eng., 2014, 22(3): 770-778. (in Chinese)
王良君, 石光明, 李甫, 等. 混合观测压缩感知图像多描述编码[J]. 光学精密工程, 2013, 21(3):724-733. WANG L J, SHI G M, LI P,et al.. Compressive sensing multiple description image coding with hybrid sampling[J]. Opt. Precision Eng., 2013, 21(3): 724-733. (in Chinese)
朱明, 高文, 郭立强. 压缩感知理论在图像处理领域的应用[J]. 中国光学, 2011, 4(5): 441-447. ZHU M, GAO W, GUO L Q.Application of compressed sensing theory in image processing[J]. Chinese Optics, 2011, 4(5): 441-447. (in Chinese)
DUARTE M F, DAVENPORT M A, TAKHAR D, et al.. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
SUN T, KELLY K. Compressive sensing hyperspectral imager[C]. Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, San Jose, California, 2009: CTuA5.
WAGADARIKAR A, JOHN R, WILLETT Rt, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): 44-51.
肖龙龙, 刘昆, 韩大鹏, 等. 压缩感知理论在光学成像中的应用[J]. 应用光学, 2012, 33(1): 71-77. XIAO L L, LIU K, HAN D P,et al.. Application of compressed sensing in optical imaging[J]. Journal of Applied Optics, 2012, 33(1): 71-77. (in Chinese)
冯燕, 贾应彪, 曹宇明, 等. 高光谱图像压缩感知投影与复合正则重构[J]. 航空学报, 2012, 33(8): 1466-1473. FENG Y, JIA Y B, CAO Y M, et al.. Compressed sensing projection and compound regularizer reconstruction for hyperspectral images[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1466-1473. (in Chinese)
WANG Z, YAN F, JIA Y. Spatial-spectral compressive sensing of hyperspectral image[C]. Third IEEE International Conference on Information Science and Technology, Yangzhou, Jiangsu, China, 2013: 1256-1259.
贾应彪, 冯燕, 王忠良, 等. 基于谱间结构相似先验的高光谱压缩感知重构[J]. 电子与信息学报, 2014, 36(6): 1406-1412. JIA Y B, FENG Y, WANG ZH L, et al.. Hyperspectral compressive sensing recovery via spectrum structure similarity[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1406-1412. (in Chinese)
计振兴, 孔繁锵. 基于谱间线性滤波的高光谱图像压缩感知[J]. 光子学报, 2012, 41(1): 82-86. JI ZH X, KONG F Q. Hyperspectral image compressed sensing based on linear filter between bands[J]. Acta Photonica Sinica, 2012, 41(1): 82-86. (in Chinese)
AUGUST Y, VACHMAN C, STERN A. Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging[C]. Compressive Sensing II, Baltimore, MD, United states, 2013:1-10.
CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159.
焦李成, 杨淑媛, 刘芳, 等. 图像压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662. JIAO L CH, YANG SH Y, LIU F,et al.. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662. (in Chinese)
HORNBECK L J. From cathode rays to digital micromirrors: A history of electronic projection display technology[J]. Ti Technical Journal, 1998, 15(3): 7-46.
CAND'ES E J, ROMBERG J K. The l1-magic toolbox[OL]. http://www.l1-magic.org, 2008.
BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al.. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
VANE G, GREEN R O, CHRIEN T G, et al.. The airborne visible infrared imaging spectrometer(AVIRIS)[J]. Remote Sensing of Environment, 1993, 44(2):127-143.
NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 98-910.
CLARK R N, SWAYZE G A, WISE R, et al.. USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231[EB/OL].(2007-09-13)[2007-09-20].http://speclab.cr.usgs.gov/spectral.lib06.
0
浏览量
1034
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构