浏览全部资源
扫码关注微信
清华大学 精密仪器系 精密测试技术及仪器国家重点实验室 北京,100084
收稿日期:2014-05-29,
修回日期:2014-06-23,
纸质出版日期:2014-11-25
移动端阅览
柳建楠, 王浩源, 王伯雄等. 流场超声层析成像中图像的迭代滤波反投影重建[J]. 光学精密工程, 2014,22(11): 3136-3144
LIU Jian-nan, WANG Hao-yuan, WANG Bo-xiong etc. Iterative filtered back projection image reconstruction for ultrasonic tomographic flow field imaging[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3136-3144
柳建楠, 王浩源, 王伯雄等. 流场超声层析成像中图像的迭代滤波反投影重建[J]. 光学精密工程, 2014,22(11): 3136-3144 DOI: 10.3788/OPE.20142211.3136.
LIU Jian-nan, WANG Hao-yuan, WANG Bo-xiong etc. Iterative filtered back projection image reconstruction for ultrasonic tomographic flow field imaging[J]. Editorial Office of Optics and Precision Engineering, 2014,22(11): 3136-3144 DOI: 10.3788/OPE.20142211.3136.
为提高流场超声层析成像的图像重建质量
提出了一种迭代滤波反投影图像重建算法。该算法借鉴联合迭代重建算法的原理
将滤波反投影算法引入迭代重建过程。首先
利用滤波反投影算法
通过投影数据残差重建误差图像对流场图像进行修正
实现图像的迭代重建。然后
通过优化迭代步长
使每步迭代后投影数据残差均取得极小值以便加快收敛速度。最后
基于流场连续、紧支撑分布的特点
在迭代重建过程中引入投影数据的细分内插和流场图像的圆域修正。实验表明:相比于滤波反投影算法
迭代滤波反投影算法可使理论流场重建的图像误差平均减少26%
流量误差由1.77%减小至0.25%以内;程序运行时间为0.63 s
仅为联合迭代重建算法的0.89%。该算法可实现对直管段内和单弯管下游实际流场的可靠重建
满足流场高精度实时成像的要求。
To improve the image reconstruction resolution of ultrasonic tomographic flow field imaging
an iterative Filtered Back Projection (FBP) algorithm was proposed. On the basis of the Simultaneous Iterative Reconstruction Technique (SIRT)
the FBP algorithm was integrated into an iterative reconstruction process. With the FBP algorithm
an error image was reconstructed by the residual error of the projection data
then the flow field image was revised and the iterative reconstruction of the image was implemented. By optimizing the iteration step size
the residual error of the projection data for each iteration was minimized to improve the speed of convergence. Finally
according to the flow field characteristics in continuity and compact support
the projection data was interpolated and the flow field image was assigned a value of zero outside the circular domain. Simulation results indicate that the iterative FBP algorithm decreases the image error by 26% and the volume flow rate error decreases from an average of -1.77% to 0.25% as compared with the FBP algorithm. In addition
the computational time of the iterative FBP algorithm is just 0.63 s
only 0.89% that of SIRT. In actual experiments
the iterative FBP algorithm can reconstruct the flow fields in a straight pipe and downstream of a 90 single bend with high reliability. It concludes that the iterative FBP algorithm implements the reconstruction of flow fields in real-time and higher accurate because of its good reconstruction resolution and high computational efficiency.
KURNIADI D, TRISNOBUDI A. A multi-path ultrasonic transit time flow meter using a tomography method for gas flow velocity profile measurement[J]. Particle & Particle Systems Characterization, 2006, 23(3-4): 330-338.
CHUN S, YOON B R, LEE K B. Diagnostic flow metering using ultrasound tomography[J]. Journal of Mechanical Science and Technology, 2011, 25(6): 1475-1482.
RYCHAGOV M N, RUCHKIN S V, TERESHCHENKO S A, et al.. Imaging of fluid flow by tomographic reconstruction using enhanced multipath ultrasonic measurements[C]. Proceedings of the IEEE Ultrasonics Symposium, Honolulu, USA, IUS, 2003: 803-806.
TEERAWATANACHAI S, KOMIYA K, SASAMOTO H, et al.. An ultrasonic tomography for reconstructing the velocity profile of air flow from nonuniformly spaced projection data[J]. Trans. of the Society of Instrument and Control Engineers, 1992, 28(11): 1274-1281.
王伯雄,崔园园,柳建楠,等. 一种基于超声波的管道流速成像和流量测量方法:中国,201210100169[P]. 2012. WANG B X, CUI Y Y, LIU J N, et al.. Pipeline flow velocity imaging and flow measuring method based on ultrasonic: China, 201210100169[P]. 2012. (in Chinese)
JAAFAR W, FISCHER S, BEKKOUR K. Velocity and turbulence measurements by ultrasound pulse Doppler velocimetry[J]. Measurement, 2009, 42(2): 175-182.
SKUPSCH C, BRVCKER C. Multiple-plane particle image velocimetry using a light-field camera[J]. Optical Express, 2013, 21(2): 1726-1740.
王晟,张振荣,邵珺,等. 瞬态流场定量测量中平面激光诱导荧光图像的降噪[J]. 光学精密工程, 2013,21(7): 1858-1864. WANG SH, ZHANG ZH R, SHAO J, et al.. Denoising of PLIF images for flow parameter measurement[J]. Opt. Precision Eng., 2013, 21(7): 1858-1864.(in Chinese)
WOLF D, LUBK A, LICHTE H. Weighted simultaneous iterative reconstruction technique for single-axis tomography[J]. Ultramicroscopy, 2014, 136: 15-25.
YANG Q, DENG B, LV W, et al.. Fast and accurate X-ray fluorescence computed tomography imaging with the ordered-subsets expectation maximization algorithm[J]. Journal Synchrotron Radiation, 2012, 19: 210-215.
KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging[M]. New York: IEEE Press, 1988.
MOORE P I, BROWN G J, STIMPSON B P. Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: methodology[J]. Measurement Science and Technology, 2000, 11: 1802-1811.
吴新杰,黄国兴,王静文. 粒子滤波算法在ECT图像重建中的应用[J]. 光学精密工程,2012,20(8): 1824-1830. WU X J, HUANG G X, WANG J W. Application of particle filtering algorithm to image reconstruction of ECT[J]. Opt. Precision Eng., 2012, 20(8): 1824-1830.(in Chinese)
KALPAKLI A, ÖRLÜ R. Turbulent pipe flow downstream a 90° pipe bend with and without superimposed swirl[J]. International Journal of Heat and Fluid Flow, 2013, 41:103-111.
0
浏览量
332
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构