浏览全部资源
扫码关注微信
北京理工大学 机械与车辆学院 北京,100081
收稿日期:2014-03-13,
修回日期:2014-05-05,
纸质出版日期:2014-12-25
移动端阅览
郭崇颖, 刘检华, 唐承统等. 基于三维凸包的公差基准轴线拟合[J]. 光学精密工程, 2014,22(12): 3247-3257
GUO Chong-ying, LIU Jian-hua, TANG Cheng-tong etc. Datum axis fitting for tolerances based on 3D convex hulls[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3247-3257
郭崇颖, 刘检华, 唐承统等. 基于三维凸包的公差基准轴线拟合[J]. 光学精密工程, 2014,22(12): 3247-3257 DOI: 10.3788/OPE.20142212.3247.
GUO Chong-ying, LIU Jian-hua, TANG Cheng-tong etc. Datum axis fitting for tolerances based on 3D convex hulls[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3247-3257 DOI: 10.3788/OPE.20142212.3247.
针对采用坐标测量系统(CMM)进行基准轴线测量的特点
提出了一种基于凸包的基准轴线拟合算法.该算法首先根据计算几何的凸包理论
利用礼品包裹算法获得轴线采样点构建的三维凸包;考虑基准体系(Datum Reference Frames DRF)中基准的定义
确定基准轴线处于不同的基准优先级时被约束的自由度以及基准的评价方法.然后
利用轴线的数学方程将带约束的轴线分解成转动向量和平动向量并依次建立带约束的基准轴线转动和平动的数学模型.最后
利用三维凸包的相关定理以及基准的相关实体要求完成基准轴线的变动区域的求解.实验结果显示:采用该算法进行轴线基准体系建立得到的结果在处理无约束的轴线基准拟合时与CMM最小二乘算法得到的结果近似重叠
在处理存在约束的轴线基准拟合时两者的误差较大.不过
本文算法保证了受约束轴线相对位置关系
符合基准轴线的建立原则
满足工程需求.
According to the characteristics of datum axis measurement by using a Coordinate Measuring Machine (CMM)
a method based on 3D convex hulls was proposed to realize the datum plane fitting. Firstly
the 3D convex hulls of discrete sampling points were rapidly constructed by using "gift encapsulated algorithm" based on the computational geometric theory. According to the definition of datum axis in Datum Reference Frames (DRF)
the constrained degrees of freedom as well as the method to establish the datum axis were determine by the priority of datum axis and the features of other datum. Then
the mathematical equation of datum axis was used to resolve the constrained axis into a rotational vector and a translational vector and then to establish mathematical models with constrained datum axis rotation and constrained datum axis translation. Finally
the variable domain of datum axis was obtained by using 3D convex hulls based on material requirements. The experiment demonstrate that the results of datum axis determined by proposed method is the same as that of the CMM least square method in an unconstrained axis processing
however
it has more different as copared with that in a constrained axis processing. Fortunately
the method ensures the relative position relationship between the constrained axes
and it accords with the principle of establishing datum axes and meets the requirements of engineering applications
ZHAGN Q, FAN K C, LI Z. Evaluation method for spatial straightness errors based on minimum zone condition [J]. Precision Engineering, 1999,23(4):264-272.
CHATTERJEE G, ROTH B. On Chebychev fits for pairs of lines and polygons with specified internal angles[J]. Precision Engineering, 1997,21(1):43-56.
CALVOA R, GóMEZA E, DOMINGO R. Circle fitting from the polarity transformation regression [J]. Precision Engineering, 2013,37(4): 908-917.
苑国英,蒋庄德. 评定轴线对轴线垂直度误差的新算法[J]. 西安交通大学学报,1995,29(7):98-103. YUAN G Y, JIANG ZH D. The new algorithm to evaluate revaluate perpendicularity errors of axis to axisp [J]. Journal of Xi’an Jiao Tong University, 1995 29(7):98-103.(in Chinese)
李惠芬,蒋向前,张玉,等. 直角坐标系下计算圆柱度误差的一种实用算法[J]. 仪器仪表学报, 2002,23(4):424-426. LI H F, JIANG X Q, ZHANG Y, et al.. A practical algorithm for computing cylindricity error in the rectangular coordinates [J]. Chinese Journal of scientific Instrument, 2002,23(4):424-426.(in Chinese)
姚南殉,王殿龙,康德纯. 回转体零件轮廓度误差评定方法的实用数学模型研究[J]. 计量学报, 1991,1(24): 262-268. YAO N X, WANG D L, KANG D CH. A study on the practical mathematical model for evaluating the profile error of revolving solid [J]. Acta Metrological Sinica, 1991,01(24): 262-268.(in Chinese)
朱嘉,李醒飞,谭文斌,等. 圆心约束最小二乘圆拟合的短圆弧测量[J]. 光学 精密工程2009,17(10):2486-2492. ZHU J, LI X F, TAN W B, et al.. Measurement of short arc based on center constraint least-square circle fitting[J]. Opt. Precision Eng., 2009,17(10):2486-2492.(in chinese)
LAI J Y, CHEN I H. Minimum zone evaluation of circles and cylinders[J]. International Journal of Machine Tools Manufacture, 1996,36(4): 435-451.
LEI X Q, SONG H W, XUE Y J, et al.. Method for cylindricity error evaluation using geometry optimization searching algorithm [J]. Measurement, 2011, 44(9):1556-1563.
LAI H, JYWE W. Precision modeling of form errors for cylindricity evaluation using genetic algorithms [J]. Precision Engineering, 2000,24(4):310–319.
WEN X L, ZHAO Y B, WANG D X, et al.. Adaptive Monte Carlo and GUM methods for the evaluation of measurement uncertainty of cylindricity error [J]. Precision Engineering, 2013, 37(4): 856-864.
CHERAGHI S H, JIANG G H, AHAMD J S. Evaluating the geometric characteristics of cylindrical features[J]. Precision Engineering, 2003,27(2):195-204.
王东霞,温秀兰,赵艺兵. 基于CAD模型引导测量的自由曲面定位及轮廓度误差评定[J]. 光学 精密工程 2012,20(12):2720-2727. WANG D X, WEN X L, ZHAO Y B. Localization and profile error evaluation of freeform surface based on CAD model directed measurement [J]. Opt. Precision Eng., 2012, 20(12): 2720-2727.(in chinese)
岳武陵,吴勇. 基于多目标优化的空间直线度误差评定[J]. 光学 精密工程,2008,16(8):1423-1427. YUE W L,WU Y. Evaluation of spatial straightness errors based on multistage optimization[J]. Opt. Precision Eng., 2008,16(8) :1423-1427.(in chinese)
崔长彩,黄富贵,张认成,等. 粒子群优化算法及其在圆柱度误差评定中的应用[J]. 光学 精密工程,2006,14(2):256-260. CUI CH C, HUANG F G, ZHANG R CH,et al.. Research on cylindricity evaluation based on the Particle Swarm Optimization(PSO) [J]. Opt. Precision Eng., 2006,14(2):256-260.(in chinese)
LI Z F, CUI CH C, CHE R CH,et al.. Comparison of genetic algorithm based evaluation of roundness with evaluation of roundness based on least squared method [J]. Opt. Precision Eng., 2003,11(3):257-261.
HUANG J. Exact minimum zone solution for three-dimensional straightness evaluation problems[J]. Precision Engineering, 1999,23(3):204-208.
HUANG J. Exact solution for the roundness evaluation problems [J]. Precison Engineering, 1999, 23(1):2-8.
ENDRIASA D H, HSI-YUNG F, JI M, et al.. A combinatorial optimization approach for evaluating minimum-zone spatial straightness errors[J]. Measurement, 2012,45(5): 1170-1179.
SHUNMUGAM M S,VENKAIAH N. Evaluation of form data using computational geometric techniques—Part II: Cylindricity error[J]. International Journal of Machine Tools & Manufacture, 2007,47(7):1237–1245.
王建华,陈城. 圆度误差评定中α—壳的删点效率分析[J]. 西安工业大学学报,2009,29(5):424-427. WANG J H, CHEN CH. Analyzing efficiency of datum deleting of α—hull in evaluation of roundness error [J]. Journal of Xi’an Technological University,2009,29(5):424-427.(in Chinese)
王丽,王建华. 圆度误差评定中的一种新的删点技术[J]. 西安工业学院学报,2002,22(3):193-199. WANG L, WANG J H. A new technology to delete sample datum in the process of evaluating roundness error [J]. Journal of Xi’an institute of technology,2002,22(3):193-199.(in Chinese)
Dimensioning and tolerancing [M].New York: N.Y., ASME,2009.
王嘉业,王长文,屠长河,等.计算几何及应用[M]. 北京:科学出版社,2011,9. WANG J Y, WANG CH W, TU CH H, et al.. Computational Geometry and Its Applications [M]. Beijing: Science Press, 2011,9.(in Chinese)
王洁,刘检华,刘伟东,等. 虚拟环境中公差域建模技术[J]. 计算机集成制造系统,2012,18(12):2595-2603. WANG J, LIU J H, LIU W D, et al.. Modeling technology of tolerance zone in virtual environment [J]. Computer Integrated Manufacturing Systems, 2012,18(12):2595-2603.(in Chinese)
0
浏览量
376
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构