浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-11-15,
修回日期:2014-01-27,
纸质出版日期:2014-12-25
移动端阅览
丁玲, 孙辉, 贾宏光等. 应用遗传算法优化设计机翼复合材料蜂窝夹层结构蒙皮[J]. 光学精密工程, 2014,22(12): 3272-3279
DING Ling, SUN Hui, JIA Hong-guang etc. Optimization design of composite wing skin with honeycomb sandwich by genetic algorithm[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3272-3279
丁玲, 孙辉, 贾宏光等. 应用遗传算法优化设计机翼复合材料蜂窝夹层结构蒙皮[J]. 光学精密工程, 2014,22(12): 3272-3279 DOI: 10.3788/OPE.20142212.3272.
DING Ling, SUN Hui, JIA Hong-guang etc. Optimization design of composite wing skin with honeycomb sandwich by genetic algorithm[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3272-3279 DOI: 10.3788/OPE.20142212.3272.
为提高无人机复合材料机翼蒙皮的强度
应用遗传算法优化设计了蜂窝夹层结构蒙皮的铺层.针对复合材料结构优化变量离散化的特点
设计了应用整数编码策略的遗传算法
并根据Tsai-Wu准则提出了适应度函数
参考复合材料的铺层原则给出了约束条件.然后
通过优化设计得到了最佳的蒙皮复合材料结构铺层方案.最后
通过有限元分析及静力试验验证了复合材料蜂窝夹层结构蒙皮设计的合理性.试验结果表明:左、右机翼翼梢的最大变形分别为116.02 mm和105.36 mm
小于性能要求的180 mm.探伤测试显示机翼复合材料结构没有出现损坏
满足机翼结构的工程指标要求.此机翼结构的无人机已成功完成了首飞试验
验证了设计结果的可信及工程可用性.
To improve the strength of composite wing skin of a Unmanned Aerial Vehicle(UAV)
the stacking sequence of honeycomb sandwich structure wing skin was designed optimally by a genetic algorithm. According to the design variables' discrete characteristics of the composite
the genetic algorithm based on an integral code strategy was presented. In consideration of the Tsai-Wu criterion
the fitness function was proposed and the constrain conditions were given by the stacking sequence principle of composite laminate layout. Then
the optimized stacking sequence scheme for skin composite structure was obtained by optimization design. Finally
the rationality of the composite laminate layout was verified by finite element analysis and static experiments. The experimental results show that the maximum deformations of the left and right wing tips are 116.02 mm and 105.36 mm
respectively
which meet the requirements that the best deformation is less than 180 mm. Ultrasonic inspection was performed and no damage is detected
which means that the wing structure meets the demands of engineering applications. An UAV with the composite wing skin was flown out successfully
and it verifies the feasibility of proposed design.
安源,贾学志,张雷,等. 基于碳纤维复合材料的空间相机高比刚度主承力板优化设计[J]. 光学 精密工程,2013,21(2):416-422. AN Y, JIA X ZH, ZHANG L, et al.. Optimization design of CFRP based main backbone with high stiffness ratio for space camera [J]. Opt. Precision Eng., 2013,21(2): 416-422. (in Chinese)
何楠,杨加斌,高峰. 先进复合材料在军用无人机上的应用动向[J]. 玻璃钢/复合材料,2013,2: 94-97. HE N, YANG J B, GAO F. Application tendency of advanced composite materials for military unmanned aerial vehicles[J].Fiber Reinforced Plastics/Composites, 2013,2: 94-97.(in Chinese)
程文礼,邱启燕,赵彬. 无人机结构复合材料应用进展[J]. 航空制造技术,2012,18:88-91. CHENG W L, QIU Q Y, ZHAO B. Application progress of composites for UAV[J].Aeronautical Manufacturing Technology,2012,18: 88-91.(in Chinese)
李威,刘宏伟. 空间光学遥感器中碳纤维复合材料精密支撑构件的结构稳定性[J]. 光学 精密工程,2008,16(11): 2173-2179. LI W, LIU H W. Structure stability of precision component made of carbon fiber composite in space optical remote sensor[J]. Opt. Precision Eng., 2008,16(11): 2173-2179. (in Chinese)
修英姝,崔德刚. 复合材料蜂窝夹层结构的优化设计[J]. 北京航空航天大学学报,2004,30(9): 855-858. XIU Y SH,CUI D G. Optimization design of composite sandwich structure [J].Journal of Beijing University of Aeronautics and Astronautics,2004,30(9):855-858. (in Chinese)
常楠,赵美英,王伟,等. 基于PATRAN/NASTRAN的复合材料机翼蒙皮优化设计[J]. 西北工业大学学报,2006,24(3): 326-329. CHANG N, ZHAO M Y, WANG W,et al.. Efficiently optimization skin of composite wing structure with PATRAN/NASTRAN [J]. Journal of Northwestern Poly Technical University, 2006,24(3): 326-329. (in Chinese)
冯消冰, 黄海, 王伟. 基于遗传算法的大型风机复合材料叶片根部强度优化设计[J]. 复合材料学报,2012,29(5): 196-202. FENG X B, HUANG H, WANG W. Strength optimization of large wind turbine blade root on the genetic algorithm [J]. Acta Material Composite Sinica, 2012,29(5): 196-202. (in Chinese)
梁海洲, 张元龙. 复合材料蜂窝夹层结构翼梁优化设计[J]. 机械制造研究,2009,38(3): 3-5. LIANG H ZH, ZHANG Y L. Optimization design of composite wing beam with honeycomb sandwich [J]. Machine Building Automation, 2009,38(3):3-5. (in Chinese)
HIRANO Y, TODOROKI A. Fractal branch and bound method for staking-sequence optimization of composite delta wing[R]. AIAA,2004:6439.
ABOUHAMZE M, SHAKERI M. Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic and neural networks [J]. Composite Structure, 2007,81(2): 253-263.
ZEHNDER N, ERMANNI P. A methodology for the global optimization of laminated composite structures [J]. Composite Structures, 2006,72(3): 311-320.
LIN C C, LEE Y J. Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement [J]. Computer Structure, 2004,63: 339-345.
MUC A, GURBA W. Genetic algorithms and finite element analysis in optimization of composite structures [J]. Composite Structures, 2001,54: 275-281.
PARK J H, HWANG J H, LEE C S, et al.. Stacking sequence design of composite laminates for maximum strength using genetic algorithms [J]. Composite Structures, 2001,54: 217-231.
VLADIMIR B, OLAF W, MIKE E, et al.. Optimal design of a composite sandwich structure using lamination parameters[R]. AIAA,2012:1520.
克里斯托斯·卡萨波格罗.飞机复合材料结构设计与分析[M]. 上海:上海交通大学出版社,2011. CHRISTOS K. Design and Analysis of Composites Structures with Application to Aerospace Structures[M].Shanghai: Shanghai jiaotong university press,2011. (in Chinese)
中国航空研究院. 复合材料结构设计手册[M]. 北京:航空工业出版社,2001. Chinese Aeronautical Establishment. Design Manual of Composite Structures [M]. Beijing: Aviation Industry Press,2001. (in Chinese)
GJB 5435.9-2005. 无人机强度和刚度规范-第9部分:地面试验[S]. 北京: 中国人民解放军总装备部, 2005. GJB 5435.9-2005. Specification for unmanned aerial vehicles strength and rigidity-Part 9: Ground tests [S]. Beijing: Chinese PLA General Armament Department, 2005. (in Chinese)
0
浏览量
128
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构