浏览全部资源
扫码关注微信
南昌航空大学 无损检测教育部重点实验室,江西 南昌,330063
收稿日期:2014-03-20,
修回日期:2014-05-05,
纸质出版日期:2014-12-25
移动端阅览
秦国华, 易鑫, 李怡冉等. 刀具磨损的自动检测及检测系统[J]. 光学精密工程, 2014,22(12): 3332-3341
QIN Guo-hua, YI Xin, LI Yi-ran etc. Automatic detection technology and system for tool wear[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3332-3341
秦国华, 易鑫, 李怡冉等. 刀具磨损的自动检测及检测系统[J]. 光学精密工程, 2014,22(12): 3332-3341 DOI: 10.3788/OPE.20142212.3332.
QIN Guo-hua, YI Xin, LI Yi-ran etc. Automatic detection technology and system for tool wear[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3332-3341 DOI: 10.3788/OPE.20142212.3332.
为了精确检测机械加工过程中刀具的磨损状态
分析了刀具磨损图像中背景区、磨损区、未磨损区的灰度值变化
提出了利用图像处理技术自动检测刀具磨损量的方法.首先
根据Otsu法和B-样条曲线拟合法
建立了自动确定上限阈值与下限阈值的算法
准确地增强了磨损区与背景区、未磨损区之间的灰度对比度;通过分析刀具磨损图像的稳定区和磨损边缘的非稳定区
提出了边界提取的局部方差阈值算法
给出了自适应的局部方差阈值
清晰地将刀具磨损区从图像中分割出来.在此基础上
利用形态学描述方法对分割部分进行孔洞填充与边界完整化
从而直接计算出磨损区域的几何参数尺寸.实验结果表明:超景深三维显微镜放大倍数为50时
磨损宽度与磨损长度的检测误差分别为1.024%和1.325%;放大倍数为100时
磨损宽度与磨损长度的检测误差分别为0.661%和0.995%.该方法检测精度高、抗干扰能力强、提取的边界完整清晰
可为提高刀具使用率、保证加工质量提供技术支持.
To automatically detect the tool wear state in metal cutting process
an automatic detection method based on image processing was proposed by analysis of the gray levels of a tool wear image in the background area
wear area and the unworn area. Firstly
the automatic determination algorithms of the upper-and lower-thresholds were respectively presented according to the Otsu method and B-spline curve fitting method. Based on the algorithms
the gray-contrasts between wear area and background area as well as wear area and unworn areas were enhanced. By analysis of the stable region within three areas and the non-stable region at two edges in the tool wear image
the local gray-level variance threshold algorithm was presented for the boundary extraction. An adaptive threshold of the local variance was defined
by which the tool wear region was segregated from the tool wear image clearly. On this basis
the morphological method was used to fill out the holes of the segregated part
so that the corresponding geometric parameters of the wear areas were precisely achieved. Experimental results show that the detection errors of the wear width and the wear length are respectively 1.024% and 1.325% when the magnification of 3D microscope is 50
whereas they are 0.661% and 0.995% when the magnification is 100. The proposed method is characterized by strong anti-interference
and higher detection accuracy. It can supply the technology support for improving the tool utilization
guaranteeing the machining quality
and saving the manufacturing cost.
陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9): 2230-2240. CHEN Y, YANG SH B, FU Y C, et al.. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2230-2240. (in Chinese)
梁伟云, 郭井宽, 陈晓波,等. 基于影像视觉的立铣刀磨损状态监测技术研究与系统开发[J]. 工具技术, 2012, 46(12): 59-74. LIANG W Y, GUO J K, CHEN X B, et al.. Research and application of end mill wear state measuring system based on shadow casting [J]. Tool Engineering, 2012,46(12):59-74. (in Chinese)
BRADLEY C, WONG Y S. Surface texture indicators of tool wear - a machine vision [J]. The International Journal of Advanced Manufacturing Technology, 2001, 17(6):435-443.
孙林丽, 李言, 郑建明, 等. 基于表面二维PCA重构图像的刀具磨损分形特征研究[J]. 机械科学与技术, 2010, 29(3): 395-397. SUN L L, LI Y, ZHENG J M, et al.. Fractal analysis of PCA reconstruction for tool wear monitoring [J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(3): 395-397. (in Chinese)
杨建国, 肖蓉,李蓓智,等. 基于机器视觉的刀具磨损检测技术[J]. 东华大学学报, 2012, 38(5): 505-508,518. YANG J G, XIAO R, LI B ZH, et al.. Tool wear detection based on machine vision [J]. Journal of Donghua university, 2012,38(5):505-508,518. (in Chinese)
HUSSAIN S, CHEN X. Remote milling tool-wear monitoring and direct wear features extraction by image processing [J]. Internet Manufacturing and Services, 2008, 1(3):246-261.
JURKOVIC J, KOROSEC M, KOPAC J. New approach in tool wear measuring technique using CCD vision system [J]. International Journal of Machine Tools & Manufacture, 2005, 45(9):1023-1030.
MOOK W K, SHAHABI H H, RATNAM M M. Measurement of nose radius wear in turning tools from a single 2D image using machine vision [J]. The International Journal of Advanced Manufacturing Technology, 2009, 43(3-4):217-225.
ZHANG J L, ZHANG C, GUO S, et al.. Research on tool wear detection based on machine vision in end milling process [J]. Production Engineering, 2012,6(4-5):431-437.
CASTEJON M, ALEGRE E, BARREIRO J, et al.. On-line tool wear monitoring using geometric descriptors from digital images [J]. International Journal of Machine Tools & Manufacture, 2007, 47(18):1847-1853.
何志勇, 孙立宁, 黄卫国, 等. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学 精密工程, 2012, 20(10): 2315-2323. HE ZH Y, SUN L N, HUANG W G, et al.. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram [J]. Opt. Precision Eng., 2012, 20(10): 2315-2323. (in Chinese)
0
浏览量
702
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构