浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 长春工程学院 电气与信息工程学院,吉林 长春,130012
收稿日期:2014-04-16,
修回日期:2014-05-19,
纸质出版日期:2014-12-25
移动端阅览
张欣, 白越, 赵常均等. 多旋翼姿态解算中的改进自适应扩展Kalman算法[J]. 光学精密工程, 2014,22(12): 3384-3390
ZHANG Xin, BAI Yue, ZHAO Chang-jun etc. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3384-3390
张欣, 白越, 赵常均等. 多旋翼姿态解算中的改进自适应扩展Kalman算法[J]. 光学精密工程, 2014,22(12): 3384-3390 DOI: 10.3788/OPE.20142212.3384.
ZHANG Xin, BAI Yue, ZHAO Chang-jun etc. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3384-3390 DOI: 10.3788/OPE.20142212.3384.
提出了一种改进的Sage-Husa自适应扩展Kalman滤波算法
用于保证多旋翼无人机在噪声统计特性未知且时变、振动为主要扰动源、姿态角高动态变化等飞行条件下飞行姿态角解算的精度与稳定性.该算法采用微机电系统陀螺仪实时动态解算的姿态角方差估计系统噪声方差;并采用自适应滤波算法在线估计量测噪声方差
从而保证滤波的精度与稳定性;同时引入滤波器收敛性判据
结合强跟踪Kalman滤波算法来抑制滤波发散.飞行实验与分析表明:改进算法解算的俯仰角与横滚角均方根误差分别为1.722°和1.182°
明显优于常规的Sage-Husa自适应滤波算法.实验还显示:改进的算法自适应能力强、实时性好、精度高、运行可靠
能够满足多旋翼无人机自主飞行的需要
若对参数进行适当修改
还可应用于其它动态性能要求较高的导航信息测量系统中.
An improved Sage-Husa adaptive extended Kalman filter algorithm is proposed to ensure the precision and stability of calculating attitude angles of a multi-rotor Unmanned Aerial Vehicle(UAV) under the actual flight conditions
such as unknown and time-varied noise statistical properties
main disturbance source in vibration and attitude angles high dynamically changed. The algorithm uses attitude angle variance estimated by a gyroscope in real time to estimate system noise variance and only adopts an adaptive filter algorithm to estimate measurement noise variance on-line to ensure the precision and stability of filtering. Meanwhile
it introduces the criterion of filter convergence to restrain the divergence of Kalman filter through combining with a strong tracking Kalman filter algorithm. A flight experiment and corresponding analysis show that the root-mean-square errors of the pinch and roll angles estimated by the improved algorithm are 1.722° and 1.182°
obviously better than that of the conventional Sage-Husa adaptive Kalman filter algorithm. It concludes that the improved algorithm has strong adaptive ability
good real-time performance
high precision and reliable operation. It meets the need of multi-rotor UAV autonomous flight and can be applied to other navigation information measuring systems with high dynamic performance requirements if the parameters are modified appropriately.
PAW Y CH,BALAS G J. Development and application of an integrated framework for small UAV flight control development [J]. Mechatronics,2011,21:789-802.
陈向坚,李迪,续志军,等. 四旋翼微型飞行器的区间二型模糊神经网络自适应控制[J]. 光学 精密工程, 2012, 20(6):1334-1341. CHEN X J,LI D,XU ZH J, et al.. Adaptive control of quadrotor MAV using interval type-II fuzzy neural network [J]. Opt. Precision Eng., 2012, 20(6):1334-1341. (in Chinese)
宫勋,白越,赵常均,等. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学 精密工程, 2012, 20(11):2450-2458. GONG X,BAI Y,ZHAO CH J, et al.. Hex-Rotor aircraft and its autonomous flight control system[J]. Opt. Precision Eng., 2012, 20(11):2450-2458. (in Chinese)
李迪,陈向坚,续志军. 增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用[J]. 光学 精密工程, 2013, 21(5):1183-1191. LI D, CHEN X J, XU ZH J. Gain adaptive sliding mode controller for flight attitude control of MAV[J]. Opt. Precision Eng., 2013, 21(5):1183-1191. (in Chinese)
冯智勇,曾瀚,张力,等. 基于陀螺仪及加速度计信号融合的姿态角度测量[J]. 西南师范大学学报:自然科学版, 2011, 36(4):137-141. FENG ZH Y, ZENG H, ZHANG L, et al.. Angle measurement based on gyroscope and accelerometer signal fusion [J]. Journal of Southwest China Normal University:Natural Science Edition, 2011, 36(4):137-141. (in Chinese)
GAO W, LI J C. Adaptive kalman filtering for the integrated SINS/DVL system[J]. Journal of Computational Information Systems, 2013,9(16):6443-6450.
CHINGIZ H, HALIL E S. Robust adaptive kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults[J]. Aerospace Science and Technology,2013,28:376-383.
SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics[C]. Proceeding of the Joint Automatic Control Conference, Tokyo, Japan, 1969:760-769.
KOWNACKI C. Optimization approach to adapt kalman filters for the real-time application of accelerometer and gyroscope signals’ filtering[J]. Digital Signal Processing,2011,21:131-140.
韩辅君,徐静,宋世忠. 基于低成本多传感器的自适应组合滤波[J]. 光学 精密工程, 2011, 19(12):3007-3014. HAN F J, XU J, SONG SH ZH. Adaptive attitude estimation filtering with low-cost multi-sensors for MAHRS [J]. Opt. Precision Eng., 2011, 19(12):3007-3014. (in Chinese)
张常云. 自适应滤波方法研究[J]. 航空学报, 1998, 19(7S):S96-S99. ZHANG CH Y. Approach to adaptive filtering algorithm [J]. Chinese Journal of Aeronautics, 1998, 19(7S):S96-S99. (in Chinese)
RIGATOS G G. Nonlinear kalman filters and particle filters for integrated navigation of unmanned aerial vehicles[J]. Robotics and Autonomous Systems,2012,60:978-995.
付梦印,邓志红,闫莉萍. Kalman滤波理论及其导航系统中的应用[M]. 2版.北京:科学出版社, 2010. FU M Y, DENG ZH H, YAN L P. Kalman Filtering Theory and Applications in Navigation System[M].Second Edition, Beijing: Science Press, 2010. (in Chinese)
段战胜,韩崇昭. 一种强跟踪自适应状态估计器及其仿真研究[J]. 系统仿真学报, 2004, 16(5):1020-1023. DUAN ZH SH, HAN CH ZH. A strong tracking adaptive state estimator and simulation[J]. Journal of System Simulation, 2004, 16(5):1020-1023. (in Chinese)
严恭敏,李四海,秦永元. 惯性仪器测试与数据分析[M]. 北京:国防工业出版社, 2012. YAN G M, LI S H, QIN Y Y. Test and Data Analysis of Inertial Instrument [M]. Beijing: National Defense Industry Press, 2012. (in Chinese)
0
浏览量
459
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构