浏览全部资源
扫码关注微信
西北工业大学 电子信息学院,陕西 西安,710072
收稿日期:2014-07-25,
修回日期:2014-09-11,
纸质出版日期:2014-12-25
移动端阅览
郭哲, 樊养余, 刘姝等. 三维到二维:人脸本征形状描述图[J]. 光学精密工程, 2014,22(12): 3391-3400
GUO Zhe, FAN Yang-yu, LIU Shu etc. 3D to 2D: Facial intrinsic shape description maps[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3391-3400
郭哲, 樊养余, 刘姝等. 三维到二维:人脸本征形状描述图[J]. 光学精密工程, 2014,22(12): 3391-3400 DOI: 10.3788/OPE.20142212.3391.
GUO Zhe, FAN Yang-yu, LIU Shu etc. 3D to 2D: Facial intrinsic shape description maps[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3391-3400 DOI: 10.3788/OPE.20142212.3391.
基于三维数据的人脸识别克服了二维图像数据受光照和姿态影响较大的问题
但其较高的数据维数约束了它的实际应用.本文针对三维人脸数据的简化描述
提出了将三维人脸映射至二维表示的本征形状描述图方法.该方法首先基于约束离散保形映射将三维人脸数据微分同构映射到一个局部几何特征保持的二维区域.然后基于人脸曲面几何结构特性和表观特性
构建二维本征形状描述图
用于简化对三维人脸数据的描述
并进行识别验证.基于国际公共人脸数据库FRGC2.0和GavabDB的三维人脸识别实验显示
本征形状描述图法在姿态变化大于60°时的识别率达到90.6%
比现有方法高5.9%
单次匹配时间为7.89 s.该方法将三维人脸识别问题转换为了二维平面图像的识别问题
有效降低了数据描述的复杂度.得到的结果展示了该方法计算效率高
且对姿态变化有良好的健壮性.
The face recognition based on 3D facial data overcomes the difficulties sensitive to illumination and pose variations in 2D face recognition systems. However
the high computational complexity restricts its practical applications. To simplify the description for 3D face data
a novel strategy to map 3D face data to 2D ones
called 2D intrinsic shape description map
was proposed in this paper. With the strategy
each 3D facial surface was firstly mapped homeomorphically onto a 2D lattice which keeps the local geometrical features based on the constraint discrete conformal. Then
a 2D intrinsic shape description map was obtained by combining 3D facial geometrical structure and appearance feature for simplifying 3D face representation and for verifying the recognition. The proposed strategy was compared to state-of-the-art 3D face recognition algorithms in the FRGC 2.0 and GavabDB database. The results show that the proposed strategy offers the rank-one rate of 90.6% when the pose change is greater than 60°
higher 5.9% than that of the existing method. Moreover
the single matching time is 7.89 s. As the strategy transforms the 3D face recognition into the 2D image recognition
it effectively reduces the complexity of data description and shows higher computation efficiency and robustness to a pose change.
OCEGUEDA O, FANG T, SHAH S S, et al.. 3D face discriminant analysis using gauss-markov posterior marginal [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):728-739.
KAKADIARIS I A, PASSALIS G, TODERICI G, et al.. Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4):640-649.
LU X G, JAIN A K, COLBRY D. Matching 2. 5D face scans to 3D models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 31-43.
BOEHNEN C, PETERS T, FLYNN P J. 3D signatures for fast 3D face recognition[C]. Proceedings of the third International Conference on Advances in Biometrics, Alghero, Italy: ICAB, 2009:12-21.
GUAN P, ZHANG L M. 3D face recognition based on facial structural angle and local region map[C]. Proceedings of IEEE International Conference on Multimedia and Expo, Hannover: ICME, 2008: 41-44.
MAHOOR M H, MOTTALEB M. A Face recognition based on 3d ridge image obtained from range data [J]. Pattern Recognition, 2009, 42(3): 445-451.
TER HAAR F B, VELTKAMP R C. A 3d face matching framework for facial curves [J]. Graphical Models, 2009, 71(2):77-91.
FALTEMIER T, BOWYER K, FLYNN P. A region ensemble for 3d face recognition [J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1): 62-73.
LEI Y J, BENNAMOUN M, ELSALLAM A A. An efficient 3D face recognition approach based on the fusion of novel local low-level features [J]. Pattern Recognition, 2013, 46(1): 24-37.
QUEIROLO C C, SILVA L, BELLON O R, et al.. 3D face recognition using simulated annealing and the surface interpenetration measure [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(2): 206-219.
SPREEUWERS L. Fast and accurate 3d face recognition [J]. International Journal of Computer Vision, 2011, 93(3): 389-414.
ZHANG Y N, GUO Z, XIA Y, et al.. 2D representation of facial surfaces for multi-pose 3D face recognition [J]. Pattern Recognition Letters, 2012, 33(5): 530-536.
李伟红, 朱宪宇, 龚卫国. 基于人脸图像的伪照片合成及修正[J]. 光学 精密工程, 2014, 22(5): 1371-1378. LI W H, ZHU X Y, GONG W G. Pesudophoto synthesis based on face sketch and its amendment[J]. Opt. Precision Eng., 2014, 22(5): 1371-1378. (in Chinese)
杨利平, 辜小花. 用于人脸识别的相对梯度直方图特征描述[J]. 光学 精密工程, 2014, 22(1): 152-158. YANG L P, GU X H. Relative gradient histogram features for face recognition[J]. Opt. Precision Eng., 2014, 22(1): 152-158. (in Chinese)
WANG Y M, LIU J Z, TANG X O. Robust 3D face recognition by local shape difference boosting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 32(10):1858-1870.
WANG S, WANG Y, JIN M, et al.. Conformal geometry and its applications on 3D shape matching, recognition and stitching [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2007, 29(7): 1209-1220.
PHILLIPS P J. FRGC2.0 Database[OL].[2008-08].http://www.nist.gov/itl/iad/ig/frgc.cfm.
MORENO A B, SANCHEZ A. GavabDB: a 3D face database[C]. Proceedings of COST Workshop on Biometrics on the Internet, Vigo, Spain: WBI, 2004: 77-82.
DRIRA H, BEN A B, SRIVASTAVA A, et al.. 3D face recognition under expressions, occlusions and pose variations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2270-2283.
张少迪, 王延杰, 孙宏海. 三角剖分以及径向基函数神经网络在星图识别中的应用 [J]. 光学 精密工程, 2012, 20(2): 395-402. ZHANG SH D, WANG Y J, SUN H H. Application of triangulation and RBF neural network to star pattern recognition[J]. Opt. Precision Eng., 2012, 20(2): 395-402. (in Chinese)
GUO Z, ZHANG Y N, XIA Y, et al.. Multi-pose 3D face recognition based on 2D sparse representation [J]. Journal of Visual Communication and Image Representation, 2013, 24(2):117-126.
SMEETS D, KEUSTERMANS J, VANDERMEULEN D, et al.. MeshSIFT: local surface features for 3D face recognition under expression variations and partial data [J]. Computer Vision and Image Understanding, 2013, 117(2): 158-169.
RUDOVIC O, PANTIC M, PATRAS L. Coupled Gaussian processes for pose-invariant facial expression recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1357-1369.
CHU B, ROMDHANI S, CHEN L. 3D-aided face recognition robust to expression and pose variations[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus,USA: CVPR, 2014.
杨剑, 韩建栋, 秦品乐. 视觉测量中可纠错的编码点识别及提取[J]. 光学 精密工程, 2012, 20(10): 2293-2299. YANG J, HAN J D, QIN P L. Correcting error on recognition of coded points for photogrammetry[J]. Opt. Precision Eng., 2012, 20(10): 2293-2299. (in Chinese)
CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3):27.
李静宇, 王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示, 2014,29(4): 617-622. LI J Y, WANG Y J. Subspace based target tracking algorithm [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 617-622. (in Chinese)
谢俊国, 赵慧. 基于相机实拍的高分辨集成成像三维显示技术的研究[J]. 液晶与显示, 2014, 29(1): 114-119. XIE J G, ZHAO H. High resolution D display technology of integral imaging based on photographic [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1):114-119. (in Chinese)
王灿进, 孙涛, 王挺峰,等. 基于轮廓特征的神经网络目标识别研究[J]. 液晶与显示, 2013, 28(4):641-648. WANG C J, SUN T, WANG T F, et al.. Target recognition using neural network based on Contour features [J]. Chinese Journal of Liquid Crystals and Displays, 2013,28(4):641-648. (in Chinese)
0
浏览量
360
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构