浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2014-02-15,
修回日期:2014-04-11,
纸质出版日期:2015-01-25
移动端阅览
陈伟, 郑玉权, 薛庆生*. 机载宽视场大相对孔径成像光谱仪[J]. 光学精密工程, 2015,23(1): 15-21
CHEN Wei, ZHENG Yu-quan, XUE Qing-sheng*. Airborne imaging spectrometer with wide field of view and large relative-aperture[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 15-21
陈伟, 郑玉权, 薛庆生*. 机载宽视场大相对孔径成像光谱仪[J]. 光学精密工程, 2015,23(1): 15-21 DOI: 10.3788/OPE.20152301.0015.
CHEN Wei, ZHENG Yu-quan, XUE Qing-sheng*. Airborne imaging spectrometer with wide field of view and large relative-aperture[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 15-21 DOI: 10.3788/OPE.20152301.0015.
根据宽视场大相对孔径成像光谱仪的应用要求和技术指标
采用离轴Schwarzschild望远成像系统和双Schwarzschild光谱成像系统匹配的结构型式
设计了一个视场为28、相对孔径为1/2.5、工作波段为0.4~1 m的机载成像光谱仪光学系统;根据双Schwarzschild光谱成像系统的像散校正条件计算了初始结构参数.然后
利用光学设计软件ZEMAX-EE进行了光线追迹和优化设计
并对设计结果进行了分析与评价. 结果显示:光谱成像系统中心波长和边缘波长88%以上的能量集中在一个探测器像元内;谱线弯曲和谱带弯曲均小于像元的5%
便于光谱和辐射定标;成像光谱仪全系统在各个波长的光学传递函数均达到0.59以上
完全满足设计指标要求.该成像系统体积小、重量轻
非常适合航空遥感应用.
According to the requirements of an airborne imaging spectrometer for the wide angle and large relative-aperture
an optical system for the airborne imaging spectrometer was designed using an off-axis Schwarzschild telescopic system and a double-Schwarzschild spectral imaging system. The imaging spectrometer has specifications by a field of view of 28
a relative-aperture of 1/2.5
and working waveband from 0.4 m to 1 m. Based on the astigmatism-correction condition of double-Schwarzschild spectral imaging system
the initial parameters were calculated. Then
the ray tracing and optimization design were performed by ZEMAX software. The analysis and evaluation on the design show that 88% of the encircled energy for centric and edge wavelengths is within one pixel; both smile and keystone are less than 5% of the size of one pixel
so it is easy for spectral and radiation calibrations. Moreover
the MTF of imaging spectrometer is more than 0.59 for different wavelengths
which satisfies the requirements of specifications. As the spectrometer has a smaller volume and lower mass
it is suitable for airborne remote sensing.
郑玉权, 高志良. CO2探测仪光学系统设计 [J]. 光学 精密工程,2012,20(12):2645-2653. ZHENG Y Q, GAO ZH L. Optical system design of CO2 sounder [J]. Opt. Precision Eng., 2012, 20(12): 2645-2653. (in Chinese)
郑玉权. 温室气体遥感探测仪器发展现状 [J]. 中国光学,2011,4(6):546-561. ZHENG Y Q. Development status of remote sensing instruments for greenhouse gases [J]. Chinese Optics, 2011, 4(6): 546-561. (in Chinese)
赵敏杰, 司福祺, 江宇, 等. 星载大气痕量气体差分吸收光谱仪的实验室定标 [J]. 光学 精密工程, 2013,21(3):567-574. ZHAO J M, SI F Q, JIANG Y, et al.. In-lab calibration of space-borne differential optical absorption spectrometer [J]. Opt. Precision Eng., 2013, 21(3): 567-574. (in Chinese)
赵慧洁, 程宣, 张颖. 用于火星探测的声光可调谐滤波器成像光谱仪 [J]. 光学 精密工程, 2012,20(9):1945-1952. ZHAO H J, CHENG X, ZHANG Y. Design of acousto-optic imaging spectrometer for mars exploration [J]. Opt. Precision Eng., 2012, 20(9): 1945-1952. (in Chinese)
MILES T, JOEL P, ANDREW S, et al.. Advanced airborne hyperspectral imaging system [J]. SPIE, 2002, 4816: 1-11.
DAVIS C O, JEFFE B, ROBBERT A L, et al.. Ocean PHILLS hyperspectral imager: design, characterization, and calibration [J]. Optics Express, 2002, 10(4): 210-221.
安岩,孙强, 刘英,等. 交叉型消像散Czerny-Turner结构光谱仪设计 [J]. 中国光学,2012,5(5):470-475. AN Y,SUN Q, LIU Y, et al.. Design of astigmatism-free crossed Czerny-Turner spectrometer [J]. Chinese Optics, 2012, 5(5): 470-475. (in Chinese)
SEYMOUR R. Inverse Cassegrainian systems [J]. Applied Optics, 1968, 7(8): 1483-1497.
胡大伟, 李艳秋, 刘晓林. 超高数值孔径Schwarzschild投影光刻物镜的光学设计 [J]. 光学学报, 2013,33(1):0122004-1-7. HU D W, LI Y Q, LIU X L. Optical design of hyper numerical-aperture Schwarzschild projection lithographic lens [J]. Acta Optica Sinica, 2013, 33(1): 0122004-1-7. (in Chinese)
郑玉权, 王慧, 王一凡. 星载高光谱成像仪光学系统的选择与设计 [J]. 光学 精密工程, 2009, 17(11): 2629-2637. ZHENG Y Q, WANG H, WANG Y F. Selection and design of optical systems for spaceborne hyperspectral imagers [J]. Opt. Precision Eng., 2009, 17(11): 2629-2637. (in Chinese)
TAE H K, HONG J K, TAE H K,et al.. Design and fabrication of a 900-1 700 nm hyper-spectral imaging spectrometer[J]. Optics Communication, 2010, 283(3): 355-361.
PANTAZIS M. Spectral and spatial uniformity in pushbroom imaging spectrometers [J]. SPIE, 1999, 3753: 133-141.
0
浏览量
450
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构