浏览全部资源
扫码关注微信
上海交通大学 电子信息与电气工程学院 上海,200240
收稿日期:2014-06-28,
修回日期:2014-08-23,
纸质出版日期:2015-01-25
移动端阅览
贺术, 颜国正, 柯全等. 肠道驻留机构的设计和实验[J]. 光学精密工程, 2015,23(1): 102-109
HE Shu, YAN Guo-zheng, KE Quan etc. Design and experiment of an intestinal anchoring mechanism[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 102-109
贺术, 颜国正, 柯全等. 肠道驻留机构的设计和实验[J]. 光学精密工程, 2015,23(1): 102-109 DOI: 10.3788/OPE.20152301.0102.
HE Shu, YAN Guo-zheng, KE Quan etc. Design and experiment of an intestinal anchoring mechanism[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 102-109 DOI: 10.3788/OPE.20152301.0102.
研究并设计了一种微型肠道驻留机构以实现胃肠道机器人在人体肠道特殊环境下的有效驻留.该驻留机构采用径向伸出三组腿的方式实现扩张
扩张后三组腿仍然处于封闭状态
从而有效降低了肠道组织被夹住的风险.对驻留机构与肠道之间的相互作用进行了建模分析
并将驻留机构的驻留力分为库伦摩擦力和边缘阻力两部分
分析了其产生机理.通过实验测试了驻留机构的扩张力以及驻留力.实验结果表明:驻留机构的扩张力与理论分析较为接近
驻留力大小与肠道直径、驻留腿扩张直径以及驻留机构速度有关.当驻留腿的扩张直径为20~26 mm时
驻留力大小为0.15~0.4 N;当驻留腿扩张直径大于26 mm时
驻留力迅速增加
为0.5~1.8 N.设计的肠道驻留机构体积小、安全
可较好地适应肠道的生理环境
并为肠道诊疗微型机器人驻留机构的设计提供了一种新的思路.
A miniature intestinal anchoring mechanism is designed to realize the effective anchor of a gastrointestinal robotic endoscope in the special environment of human intestine. The mechanism explores a kind of expansion method through protruding three sets of legs radially
which lowers the risk of intestinal clamping because the three sets of legs show a enclosed structure after expansion. At the terminal of every legs
a curved plate is fixed to enlarge the contacting area between legs and intestine
which reduces the damage to intestinal tract. The interaction between anchoring mechanism and intestinal tract is modeled. The anchoring force is divided into two parts
Coulomb friction and marginal resistance
and its mechanism is analyzed. The expanding force and anchoring force are tested through experiments. The experimental results show that the expanding force of the anchoring mechanism is close to the theoretical analysis
and the anchoring force is related to intestinal diameters
the expanding diameters of anchoring legs and the speed of the anchoring mechanism. When the diameters of the anchoring legs are 20-26 mm
the anchoring force is 0.15-0.4 N; when the diameters of anchoring legs are greater than 26 mm
the anchoring force increases rapidly between 0.5 N and 1.8 N. The anchoring mechanism proposed in this paper is characterized by safe and a smaller volume and is suitable for the physical environment of the intestine. It provides a new idea for design of the intestinal anchoring mechanism for micro robots in gastro intestinal tract diagnosis.
VALDASTRI P, SIMI M, WEBSTER R J. Advanced technologies for gastrointestinal endoscopy [J]. Annual Review of Biomedical Engineering, 2012,14: 397-429.
IDDAN G, GAVRIEL M, ARKADY G, et al.. Wireless capsule endoscopy [J]. Nature, 2000, 405: 417.
NAJARIAN S, AFHARI E. Evolutions and future directions of surgical robotics: A review [J]. International Journal of Clinical Medicine, 2012, 3(2): 75-82.
KELLER J, FIBBE C, ROSIEN U, et al.. Recent advances in capsule endoscopy: development of maneuverable capsules [J]. Expert Review of Gastroenterology & Hepatology, 2012, 6(5): 561-566.
CIUTI G, MENCIASSI A, DARIO P. Capsule endoscopy: from current achievements to open challenges [J]. Biomedical Engineering, IEEE Reviews in, 2011, 4: 59-72.
CARPI F, SHAHEED H. Grand challenges in magnetic capsule endoscopy [J]. Expert Review of Medical Devices, 2013, 10(4): 433-436.
DARIO P, CARROZZA M C, LENCIONI L, et al.. A microrobotic system for colonoscopy[C]. In Robotics and Automation, IEEE International Conference on, 1997.
CHEN W W, YAN G ZH, WANG ZH W, et al.. A wireless capsule robot with spiral legs for human intestine [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2013.
GAO P, YAN G ZH, WANG ZH W, et al.. A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon [J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(3): 256-267.
VALDASTRI P, WEBSTER R J, QUAGLIA C, et al.. A new mechanism for mesoscale legged locomotion in compliant tubular environments [J]. Robotics, IEEE Transactions on, 2009, 25(5): 1047-1057.
QUIRINI M, MENCIASSI A, SERGIO S, et al.. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract [J]. Mechatronics, IEEE/ASME Transactions on, 2008,13(2): 169-179.
PARK H, KIM D, KIM B. A robotic colonoscope with long stroke and reliable leg clamping [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1461-1466.
高鹏, 颜国正,王志武,等. 肠道微机器人柔性运动系统 [J]. 光学 精密工程, 2012, 20(3): 541-549. GAO P, YAN G ZH, WANG ZH W, et al.. Flexible locomotion system for gastrointestinal microrobots [J].Opt. Precision Eng., 2012, 20(3): 541-549. (in Chinese)
LIN W, SHI Y T, JIA ZH W, et al.. Design of a wireless anchoring and extending micro robot system for gastrointestinal tract [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2013,9(2):167-179.
陈雯雯, 颜国正,贺术,等. 胶囊内窥镜在肠道中的钳位[J]. 光学 精密工程, 2013,21(6): 1553-1560. CHEN W W, YAN G ZH, HE SH,et al.. Clamping mechanism of capsule endoscope in intestine [J].Opt. Precision Eng., 2013,21(6): 1553-1560. (in Chinese)
PHEE L, ACCOTOD, MENCIASSI A, et al.. Analysis and development of locomotion devices for the gastrointestinal tract [J]. Biomedical Engineering, IEEE Transactions on, 2002,49(6): 613-616.
ACCOTO D, PASSANISI S, GUGLIELMELLI E. Pinch locomotion: A novel propulsion technique for endoscopic robots[C]. In Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, 2012.
PHEE L, ACCOTO D, MENCIASSI A, et al.. Analysis of robotic locomotion devices for the gastrointestinal tract [J]. Robotics Research, 2003: 467-483.
0
浏览量
496
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构