浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2014-02-27,
修回日期:2014-05-21,
纸质出版日期:2015-01-25
移动端阅览
朱明超, 刘慧, 张鑫等. 惯性稳定平台自适应前馈控制[J]. 光学精密工程, 2015,23(1): 141-148
ZHU Ming-chao, LIU Hui, ZHANG Xin etc. Adaptive feed-forward control for inertially stabilized platform[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 141-148
朱明超, 刘慧, 张鑫等. 惯性稳定平台自适应前馈控制[J]. 光学精密工程, 2015,23(1): 141-148 DOI: 10.3788/OPE.20152301.0141.
ZHU Ming-chao, LIU Hui, ZHANG Xin etc. Adaptive feed-forward control for inertially stabilized platform[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 141-148 DOI: 10.3788/OPE.20152301.0141.
结合反馈控制提出了一种自适应前馈控制方法来提高惯性稳定平台稳定控制的指令跟踪性能. 应用子空间辨识算法
由输入输出数据辨识稳定平台动态模型的状态空间描述;采用频域回路成型方法设计反馈回路控制器
用于抑制外部扰动.应用递推最小二乘(RLS)自适应滤波器构建反馈控制回路逆模型
构造指令信号的全通特性
提高指令跟踪能力.针对不同的指令信号进行跟踪实验
验证了自适应前馈控制方法的有效性.实验结果表明:提出的自适应前馈方法对阶跃指令响应快
超调量可由反馈控制的30%降低至4.5%
对30 Hz正弦信号的响应幅值无衰减
相位滞后由反馈控制的90°降低至54°.得到的结果显著提高了系统的暂态性能
控制性能优于单独的反馈控制回路.
An adaptive feed-forward control method combining with feedback control was proposed to improve the command tracking performance of control circuit in an inertial stabilized platform. On the basis of subspace system identification
the input-output data were used to identify a state space of the stabilized platform model and the frequency-domain loop shaping technique was used to design the feedback loop controller to reject the external disturbance. Furthermore
a Recursive Least Square (RLS) adaptive filter was taken to build the inverse model of the feedback control loop and to construct the all-pass transfer function for increasing tracking performance. Several tracking experiments were conducted on different command inputs to verify the validity of the adaptive feed-forward controller. Experimental results show that this method responses quickly to step commands and the overshoot has decreased from 30% to 4.5% as compared with that of the feedback control. For a sinusoidal signal at the frequency of 30 Hz
the adaptive feed-forward controller can obtain an amplitude response without attenuation and the phase lag is reduced to 54° from 90° as compared with that of the feedback control. This method significantly improves the transient performance and is superior to the feedback control alone.
HILKERT J M. Inertially stabilized platform technology concepts and principles [J]. IEEE Contr. Syst. Mag., 2008, 28 (1): 26-46.
刘廷霞, 王伟国, 陈长青. 车载动平台位置干扰的传递解算 [J]. 光学 精密工程, 2013, 21 (9): 2287-2293. LIU T X, WANG W G, CHEN CH Q. Transferrable arithmetics of position-disturbing value for vehicular dynamic platform [J].Opt. Precision Eng., 2013, 21 (9): 2287-2293. (in Chinese)
MASTENM K. Inertially stabilized platforms for optical imaging systems [J]. IEEE Contr. Syst. Mag., 2008, 28 (1): 47-64.
LI B, HULLENDER D, DIRENZO M. Nonlinear induced disturbance rejection in inertial stabilization systems [J]. IEEE Trans. Control Syst. Technol., 1998, 6 (3): 421-427.
LI B, HULLENDER D. Self-Tuning controller for nonlinear inertial stabilization systems [J]. IEEE Trans. Control Syst. Technol., 1998, 6 (3): 428-434.
MOORTY J A R K, SULE V R. H∞ control law for line-of-sight stabilization for mobile land vehicles [J]. Opt. Eng., 2002, 41 (11): 2935-2944.
ABDO M M, VALI A R, TOLOEI A R,et al.. Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller [J]. ISA Trans., 2014, 53(2):591-602.
孔德杰, 戴明, 程志峰, 等. 动基座光电稳定平台伺服系统中加速度反馈的实现 [J]. 光学 精密工程, 2012, 20 (8): 1782-1788. KONG D J, DAI M, CHENG ZH F,et al.. Realization of acceleration feedback for servo system of moving base optoelectronic platform [J]. Opt. Precision Eng., 2012, 20 (8): 1782-1788. (in Chinese)
LIN C L, HSIAO Y H. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop [J]. IEEE Trans. Control Syst. Technol., 2001, 9 (1): 108-121.
HILKERT J M. Adaptive control system techniques applied to inertial stabilization systems. Proceedings of SPIE Acquisition, Tracking, and Pointing IV, 1990, 1304: 190-206.
AIRIMITOAIE T B, SILVA A C, LANDAU I D. Indirect adaptive regulation strategy for the attenuation of time varying narrow-band disturbances applied to a benchmark problem [J]. Eur. J. Control, 2013, 19 (4): 313-325.
CHEN X, TOMIZUKA M. Selective model inversion and adaptive disturbance observer for time-varying vibration rejection on an active-suspension benchmark [J]. Eur. J. Control, 2013, 19 (4): 300-312.
白瑜亮, 崔乃刚, 吕世良. 水下运载器纵向轨迹自适应跟踪控制 [J]. 光学 精密工程, 2013, 21 (7): 1719-1726. BAI Y L, CUI N G, LU SH L. Adaptive tracking control of longitudinal trajectory for underwater vehicle [J].Opt. Precision Eng., 2013, 21 (7): 1719-1726. (in Chinese)
OVERSCHEE B D, MOOR B D. Subspace Identification for Linear Systems: Theory, Implementation, Applications [M]. Boston/London/Dordrecht: Kluwer academic publishers, 1996.
张艳, 张淑梅, 乔彦峰. 基于舰载光电设备参考模型扰动估计的前馈控制 [J]. 光学 精密工程, 2013, 21 (5): 1213-1221. ZHANG Y, ZHANG SH M, QIAO Y F. Feedforward control based on reference model disturbance observer of carrier-based optoelectronic theodolite [J].Opt. Precision Eng., 2013, 21 (5): 1213-1221. (in Chinese)
HAYKINS. Adaptive Filter Theoty (4th Edition) [M]. New Jersey: Prentice Hall, 2001.
0
浏览量
606
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构