浏览全部资源
扫码关注微信
1. 中国科学院 微电子研究所 中国科学院微电子器件与集成技术重点实验室 北京,100029
2. 哈尔滨理工大学 测控技术与通信工程学院 测控技术与仪器黑龙江省高校重点实验室,黑龙江 哈尔滨,150080
收稿日期:2014-06-05,
修回日期:2014-07-13,
纸质出版日期:2015-01-25
移动端阅览
于明岩, 施云波, 赵士瑞等. 应用微波技术抑制光刻胶图形的坍塌与黏连[J]. 光学精密工程, 2015,23(1): 149-156
YU Ming-yan, SHI Yun-bo, ZHAO Shi-rui etc. Suppression of collapse and adhesion of photoresist based on microwave heating[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 149-156
于明岩, 施云波, 赵士瑞等. 应用微波技术抑制光刻胶图形的坍塌与黏连[J]. 光学精密工程, 2015,23(1): 149-156 DOI: 10.3788/OPE.20152301.0149.
YU Ming-yan, SHI Yun-bo, ZHAO Shi-rui etc. Suppression of collapse and adhesion of photoresist based on microwave heating[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 149-156 DOI: 10.3788/OPE.20152301.0149.
针对显影工艺中水的表面张力导致的高高宽比抗蚀剂图形的坍塌及黏连
提出了一种基于微波加热的干燥技术来有效改善纳米抗蚀剂图形的干燥效果.该方法利用微波穿透光刻胶结构直接加热光刻胶图形间隙中残存的去离子水
水分子吸收微波的光子能量迅速蒸发
从而有效地抑制光刻胶图形的坍塌与黏连现象.利用提出的基于微波加热的干燥方法
成功获取了高260 nm、宽16 nm的光刻胶线条组和直径为20 nm的光刻胶柱形阵列
其中高高宽比线条组和由15 625根柱子组成的柱形阵列结构没有出现坍塌及黏连情况
验证了在微波产生的交变电场作用下
可以减小水分子团簇
降低水的表面张力.
For the collapse and adhesion of photoresist with nano-structures due to the surface tension of deionized water in electron beam lithography
a drying method based on microwave heating is proposed to improve the quality of the photoresist with nano-structures. The method makes use of the microwave penetrate the photoresist to heat the water stored between resist patterns directly
and the water will evaporate with absorbing energy of microwave. Thus the collapse and adhesion of the photoresist with nano-structures can be avoided. The proposed method is used for drying photoresist lines with a height of 260 nm
width of 16 nm and photoresist pillars with the diameter of 20 nm in electron beam lithography and development. The results show that the lines and the array containing of 15 625 pillars are no collapse and adhesion
which demonstrates that the microwave with an alternating electric field can reduce the sizes of water clusters and the tension of deionized water dramatically.
PARK J, PARK J H, KIM E, et al.. Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning[J]. Advanced Materials, 2011, 23(7): 860-864.
SURESH R, MUKTI A, HU W C. Stability of HSQ nanolines defined by e-beam lithography for Si nanowire field effect transistors[J]. Journal of Vacuum Science and Technology B, 2008, 26: 2247-2251.
FINN A, LU B, KIRCHNER R, et al.. High aspect ratio pattern collapse of polymeric UV-nano-imprint molds due to cleaning[J]. Microelectronic Engineering, 2013, 110: 112-118.
DUAN H, YANG J K W, BERGGREN K K. Controlled Collapse of High-Aspect-Ratio Nanostructures [J]. Small, 2011, 7(18): 2661-2668.
AKIRA K,NORIO M. Analysis of pattern collapse of ArF excimer laser resist by direct peeling method with atomic force microscope tip [J]. Microelectronic Engineering, 2001, 57-58: 683-692.
GORELICK S, VILA-COMAMALA J, GUZENKO V A, et al.. High aspect ratio nanostructuring by high energy electrons and electroplating[J]. Microelectronic Engineering, 2011, 88(8): 2259-2262.
YAMASHITA Y. Sub-0.1 μm Patterning with High Aspect Ratio of 5 Achieved by Preventing Pattern Collapse[J]. Jpn. J. Appl. Phys., 1996, 35: 2385-2386.
GOLDFARB D, PABLO J J, NEALEY P F,et al.. Aqueous-based photoresist drying using supercritical carbon dioxide to prevent pattern collapse[J]. J. Vac. Sci. Tech. B, 2000, 18: 3313-3317.
SHINODA N, SHIMIZU T, CHANG T F M, et al.. Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles[J]. Microelectronic Engineering, 2012, 97: 126-129.
SCHMITT M, BACKEN A, FÄHLER S, et al.. Freely movable ferromagnetic shape memory nanostructures for actuation [J]. Microelectronic Engineering, 2012, 98: 536-539.
SHIBATA T, ISHII T, NOZAWA H, et al.. High-aspect-ratio nanometer-pattern fabrication using fullerene-incorporated nanocomposite resists for dry-etching application[J]. Japanese journal of applied physics, 1997, 36(12S): 7642.
SKINNER J L. Following the motions of water molecules in aqueous solutions [J]. Science, 2010, 328: 985-986.
谢常青,朱效立,牛洁斌,等. 微纳金属光学结构制备技术及应用[J]. 光学学报, 2011, 31(9): 0900128. XIE C Q, ZHU X L,NIU J B, et al... Micro- and Nano-Metal Structures Fabrication Technology and Applications[J]. Acta Optica Sinica, 2011, 31(9): 0900128. (in Chinese)
XIE CH Q, ZHU X L, LI H L, et al.. Toward two-dimensional nanometer resolution hard-X-ray differential-interference-contrast imaging using modified photon sieves[J]. Optics Letters, 2012, 37(4):749-751.
HENSCHEL W, GEORGIEV Y M, KURZ H. Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist[J]. J. Vac. Sci. Technol. B, 2003, 21: 2018-2025.
CHANDRA D,SHU Y. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces[J]. Accounts of Chemical Research, 2010, 43(8): 1080-1091.
KIMIYOSHI D, KAZUNORI M, TETSUYOSHI I, et al.. Patterning characteristics of a chemically-amplified negative resist in synchrotron radiation lithography[J]. Japanese Journal of Applied Physics, 1992, 31: 2954.
TOSHIHIKO T, MITSUAKI M, NOBUFUMI A. Mechanism of resist pattern collapse[J]. Japanese Journal of Applied Physics, 1993, 32: 6059.
CHANDRA D, YANG S. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces[J]. Accounts of Chemical Research, 2010, 43(8): 1080-1091.
MATHIEU L, LU B R, CHEN Y F,et al.. Patterning the mechanical properties of hydrogen silsesquioxane films using electron beam irradiation for application in mechano cell guidance [J]. Thin Solid Films, 2011, 519: 2003-2010.
SEAN P D, JI S X, PAUL F N. Mechanical properties of polymeric nanostructures fabricated through directed self-assembly of symmetric diblock and triblock copolymers[J]. J. Vac. Sci. Technol.B, 2012, 30: 06F204.
http://hyperphysics.phy-astr.gsu.edu/hbase/mod4.html#c1.
KAATZE U. Hydrogen Network Fluctuations and the Microwave Dielectric Properties of Liquid Water [J]. Subsurface Sensing Technologies and Applications, 2000, 1(4): 377-391.
http://www1.lsbu.ac.uk/water/microwave.html.
MORTON K J, NIEBERG G, BAI S, et al.. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching[J]. Nanotechnology, 2008, 19(34): 345301.
CHUBAROVA E, NILSSON D, LINDBLOM M, et al.. Platinum zone plates for hard X-ray applications[J]. Microelectronic Engineering, 2011, 88(10): 3123-3126.
DAO X, MIAO X, SHAO G, et al.. A novel fast and low cost replication technology for high-aspect-ratio magnetic microstructures[J]. Microsystem technologies, 2013, 19(3): 403-407.
WOO S A, PARK J Y, KIM S M, et al.. Interface imaging process for high resolution and high aspect ratio patterning[J]. European Polymer Journal, 2013, 49(6): 1707-1713.
XIE CH Q, ZHU X L, LI H L, et al.. Fabrication of X-ray diffractive optical elements for laser fusion applications[J]. Optical Engineering, 2013, 52(3):033402.
0
浏览量
600
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构