浏览全部资源
扫码关注微信
南京航空航天大学 机械结构力学及控制国家重点实验室,江苏 南京,210016
收稿日期:2014-06-19,
修回日期:2014-08-21,
纸质出版日期:2015-01-25
移动端阅览
卢倩, 黄卫清, 王寅等. 深切口椭圆柔性铰链优化设计[J]. 光学精密工程, 2015,23(1): 206-215
LU Qian, HUANG Wei-qing, WANG Yin etc. Optimization design of deep-notch elliptical flexure hinges[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 206-215
卢倩, 黄卫清, 王寅等. 深切口椭圆柔性铰链优化设计[J]. 光学精密工程, 2015,23(1): 206-215 DOI: 10.3788/OPE.20152301.0206.
LU Qian, HUANG Wei-qing, WANG Yin etc. Optimization design of deep-notch elliptical flexure hinges[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 206-215 DOI: 10.3788/OPE.20152301.0206.
考虑深切口椭圆形柔性铰链比其他常用的柔性铰链更适用于具有大行程要求的柔性机构
本文对其进行了优化设计.建立了深切口椭圆形柔性铰链的刚度模型
探讨了结构参数对其转动刚度的影响.分析了深切口椭圆柔性铰链的柔度矩阵
利用Newton-cotes求积公式简化了柔度系数的计算
在此基础上构建了多目标加权优化模型
利用模糊优化设计方法对各结构参数进行了优化设计.优化结果表明:绕
Z
轴旋转的角位移提高了16.72%;绕
Y
轴旋转角位移下降了16.01%;沿
X
轴、
Y
轴和
Z
轴产生的线位移分别下降了10%、29.33%和51.84%.数据显示:经过优化的柔性铰链在所期望的
Z
轴方向上的转动能力得到了提高
同时抑制了其他方向上的运动能力
从而提高了柔性铰链的整体运动精度和结构柔度
可用于高精密、大行程光波导封装定位平台.
Deep-notch elliptical flexure hinges are more suitable for a flexible mechanism with large stroke requirements as compared with other common flexure hinges
so this paper optimizes their design. The stiffness model of deep-notch elliptical flexure hinges was established firstly
and the impact of structural parameters on the rotational stiffness was also discussed in detail. Then
the flexibility matrix was analyzed by using Newton-cotes quadrature formula to simplify the calculation of flexibility coefficients
and each structural parameter was optimized by fuzzy optimization method based on the multi-objective optimization model. The results of optimization show that the angular displacement rotated with the
Z
axis is improved by 16.72%
while that rotated with the
Y
axis is decreased by 16.01%
and the linear displacements along the axes
X
Y
Z
are decreased by 10%
29.33% and 51.84%
respectively. After optimization
the rotation capacity of
Z
axis has been improved and the transmission capacities in other directions are both inhibited
so that the movement accuracy and structural flexibility are enhanced. The test results demonstrate that the optimized deep-notch elliptical flexure hinges meet the requirements of high-precision and large travel of waveguide package positioning platforms.
李庆祥, 王东升, 李玉和. 现代精密仪器设计(第二版) [M]. 北京: 清华大学出版社, 2004. LI Q X, WANG D SH, LI Y H.Design of Modern Precision Instruments [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
QING S X. Design, testing and precision control of a novel long-stroke flexure micro- positioning system [J]. Mechanism and Machine Theory, 2013,70(6): 209-224.
QIN Y D, BIJAN S, ZHANG D W, et al.. Compliance modeling and analysis of statically indeterminate symmetric flexure structures [J]. Precision Engineering, 2013, 37(2): 415-424.
TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nano-manipulation [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 957-978.
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构 [J]. 光学 精密工程, 2013, 21(6): 1425-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens [J].Opt. Precision Eng., 2013, 21(6): 1425-1433. (in Chinese)
杨志刚, 刘登云, 吴丽萍, 等. 应用于压电叠堆泵的微位移放大机构 [J]. 光学 精密工程, 2007, 15(6): 884-888. YANG ZH G, LIU D Y, WU L, et al.. Micro-displacement magnifying mechanism used in piezo-stack pump [J]. Opt. Precision Eng., 2007, 15(6): 884-888. (in Chinese)
TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design [J]. Precision Engineering, 2010, 34(3): 408-418.
WENDY F F, MOISES R L, OLEG S E, et al.. Combined application of power spectrum centroid and support vector machines for measurement improvement in optical scanning systems [J]. Signal Processing, 2014, 98(5): 37-51.
王姝歆, 陈国平, 周建华, 等. 复合型柔性铰链机构特性及其应用研究 [J]. 光学 精密工程, 2005, 13(S1):91-97. WANG SH X, CHEN G P, ZHOU J H, et al..Compliant mechanisms consisted of compound flexible hinges and its applications [J]. Opt. Precision Eng., 2005, 13(S1):91-97. (in Chinese)
左行勇, 刘晓明. 三种形状柔性铰链转动刚度的计算与分析 [J]. 仪器仪表学报, 2006, 27(12): 1725-1728. ZUO X Y, LIU X M.Calculation and analysis of rotational stiffness for three types of flexure hinges [J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1725-1728. (in Chinese)
邱丽芳, 南铁玲, 翁海珊. 柔性铰链运动性能多目标优化设计 [J]. 北京科技大学学报, 2008, 30(2): 189-192. QIU L F. NAN T L, WENG H SH.Multi-objective optimization for rotation capacity of flexure hinges [J]. Journal of University of Science and Technology Beijing, 2008, 30(2): 189-192. (in Chinese)
尹文韬, 芮延年, 李瑞. 微夹持机构中椭圆弧柔性铰链的模糊优化设计 [J]. 机床与液压, 2011, 39(23): 104-107. YIN W T, RUI Y N, LI R.Fuzzy optimization of the elliptical flexure hinge in micro-gripper [J]. Machine Tools&Hydraulics, 2011, 39(23): 104-107. (in Chinese)
赵磊, 巩岩, 华洋洋. 直梁圆角形柔性铰链的柔度矩阵分析 [J]. 中国机械工程, 2013, 24(18): 2462-2468. ZHAO L, GONG Y, HUA Y Y. Compliance matrix analysis of corner-filleted flexure hinge [J]. China Mechanical Engineering, 2013, 24(18): 2462-2468. (in Chinese)
TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis [J]. Precision Engineering, 2010, 34(1): 92-100.
ZELENIKA S, MUNTEANU M G, BONA F. Optimized flexural hinge shapes for microsystems and high-precision applications [J]. Mechanism and Machine Theory, 2009, 44(10): 1826-1839.
HALE L C. Principles and Techniques for Designing Precision Machines[D]. California: University of California, 1999.
SMITH T S, BADAMI V G, DALE J S, et al.. Elliptical flexure hinges [J]. Review of Scientific Instruments, 1997, 68(3): 1474-1483.
SHUSHENG B, SHANSHAN Z, XIAOFENG Z. Dimensionless design graphs for three types of annulus-shaped flexure hinges [J]. Precision Engineering, 2010, 34(3): 659-666.
LOBONTIU N, PAINE J S N, O'MALLEY E, et al.. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations [J]. Precision Engineering, 2002, 26(2): 183-192.
LOBONTIU N. Compliance-based matrix method for modeling the quasi-static response of planar serial flexure-hinge mechanisms [J]. Precision Engineering , 2014,38(3):639-650.
SACHINDRA M. Shape optimization of revolute-jointed single link flexible manipulator for vibration suppression [J]. Mechanism and Machine Theory, 2014, 75(3): 150-160.
FRANK D, MATHIAS A, TAREK I, et al.. Incorporation of flexural hinge fatigue-life cycle criteria into the topological design of compliant small-scale devices [J]. Precision Engineering, 2013, 37(3): 531-541.
DO T N, TJAHJOWIDODO T, LAU M W S, et al.. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems [J]. Mechatronics, 2014, 24(1): 12-22.
陈贵敏, 韩琪. 深切口椭圆柔性铰链 [J]. 光学 精密工程, 2009, 17(3): 570-575. CHEN G M. HAN Q.Deep-notch elliptical flexure hinges [J]. Opt. Precision Eng., 2009, 17(3): 570-575. (in Chinese)
陈贵敏, 刘小院, 贾建援. 椭圆柔性铰链的柔度计算 [J]. 机械工程学报, 2006, 42(Z): 111-114. CHEN G M, LIU X Y, JIA J Y.Compliance calculation of elliptical flexure hinge [J]. Chinese Journal of Mechanical Engineering, 2006, 42(Z): 111-114. (in Chinese)
陈贵敏, 贾建援, 刘小院, 等. 椭圆柔性铰链的计算与分析 [J]. 工程力学, 2006, 23(5): 152-156. CHEN G M, JIA J Y, LIU X Y, et al..Design calculation and analysis of elliptical flexure hinges [J]. Engineering Mechanics, 2006, 23(5): 152-156. (in Chinese)
马小姝, 李宇龙, 严浪. 传统多目标优化方法和多目标遗传算法的比较综述 [J]. 电气传动自动化, 2010, 32(3):48-50,53. MA X SH, LI Y L, YANG L.Comparison review of traditional multi-objective optimization methods and multi-objective genetic algorithm [J]. Electric Drive Automation, 2010, 32(3): 48-50, 53. (in Chinese)
杨加明, 盛佳, 张义长. 粘弹性复合材料结构的多目标优化设计 [J]. 工程力学, 2013, 30(2):19-23, 37. YANG J M, SHENG J, ZHANG Y CH. Multi-objective optimization design of composite structures with interleaved viscoelastic layers [J].Engineering Mechanics, 2013, 30(2):19-23, 37. (in Chinese)
0
浏览量
448
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构