浏览全部资源
扫码关注微信
北京航空航天大学 仪器科学与光电工程学院 北京,100191
[ "王睿(1965-), 女, 北京人, 博士, 副教授, 主要研究工作是计算机视觉, 数字光电信号处理, 光电成像与模式识别.E-mail:wangr@buaa.edu.cn" ]
[ "朱正丹(1990-), 男, 安徽合肥人, 硕士研究生, 2010年于北京航空航天大学获得学士学位, 主要从事机器视觉等方面的研究.E-mail:sy1017133@aspe.buaa.edu.cn" ]
收稿日期:2014-10-29,
修回日期:2014-11-07,
纸质出版日期:2015-01-25
移动端阅览
王睿, 朱正丹,. 融合全局-颜色信息的尺度不变特征变换[J]. 光学精密工程, 2015,23(1): 295-301
WANG Rui, ZHU Zheng-dan,. SIFT matching with color invariant characteristics and global context[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 295-301
王睿, 朱正丹,. 融合全局-颜色信息的尺度不变特征变换[J]. 光学精密工程, 2015,23(1): 295-301 DOI: 10.3788/OPE.20152301.0295.
WANG Rui, ZHU Zheng-dan,. SIFT matching with color invariant characteristics and global context[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 295-301 DOI: 10.3788/OPE.20152301.0295.
由于尺度不变特征变换(SIFT)算法只针对图像的局部特征进行描述且忽略了图像的彩色信息
当待匹配图像中存在大量形状相似区域时
误匹配率很高. 本文对SIFT图像匹配法进行了改进
提出了SCARF(Shape-color Alliance Robust Feature)图像匹配算法.为解决SIFT常出现的误匹配现象
构造的SCARF算子利用SIFT检测子提取图像的特征点集
通过建立同心圆坐标系
在SIFT原有框架的基础上融入全局形状信息和颜色不变信息
并采用欧氏距离作为匹配代价函数进行描述子匹配.对包括SCARF算法和SIFT算法在内的5种不同匹配算法通过INRIA数据库进行了实验验证
实验结果表明:SCARF算法在图像模糊、局部特征相似、JEPG压缩和光照变化等复杂变换情况下
匹配准确率优于SIFT等其他算法
降低了误匹配的概率
明显提高了匹配的稳定性和鲁棒性.
As Scale Invariant Feature Transform(SIFT)describes local characteristics of images only and ignores the color information of the images
it has higher match errors when a lot of similar regions in the images are matched. This paper improves the SIFT algorithm and proposes a novel method as an extension of the SIFT
called a Shape-color Alliance Robust Feature (SCARF) descriptor
to resolve the problems mentioned above. The proposed approach SCARF uses the SIFT descriptor to extract the feature point set of the images. Then
by building a concentric-ring model
it integrates a color invariant space and a shape context with the SIFT to construct the SCARF descriptor
and uses the Euclidean distance as cost function to match the descriptor. A comparative evaluation for different descriptors is carried out by the INRIA database
which verifies that the SCARF approach provides better results than other four state-of-the-art related methods in many cases
such as viewpoint change
zoom+ rotation
image blur and illumination change. It concludes that the SCARF reduces the probability of mismatch and improves the stability and robustness of matching process greatly.
刘志文, 刘定生, 刘鹏. 应用尺度不变特征变换的多源遥感影像特征点匹配[J]. 光学 精密工程, 2013, 21(8): 2146-2153. LIU ZH W, LIU D SH, LIU P. SIFT feature matching algorithm of multi-source remote image [J]. Opt.Precision Eng., 2013,21(8):2146-2153. (in Chinese)
赵立荣, 朱玮, 曹永刚, 等. 改进的加速鲁棒特征算法在特征匹配中的应用[J]. 光学 精密工程, 2013, 21(12): 3263-3271. ZHAO L R, ZHU W, CAO Y G, et al.. Application of improved SURF algorithm to feature matching [J]. Opt.Precision Eng., 2013,21(12): 3263-3271. (in Chinese)
韩冬松, 何昕, 魏仲慧, 等. 采用区域特征匹配的三维弹痕自动配准[J]. 液晶与显示, 2014, 29(5): 761-767. HAN D S, HE X, WEI ZH H, et al.. Automatic registration of 3-D bullet marks by matching regional features [J]. Chinese Journal of Liquid Crystals and Displays,2014,29(5):761-767.(in Chinese)
LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
MORTENSEN E N, DENG H, SHAPIRO L. A SIFT descriptor with global context [C].2005 IEEE Computer Society Conference on CVPR, 2005: 184-190.
BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up Robust Features [M]. Computer Vision-ECCV 2006, Springer, 2006: 404-417.
苏可心, 韩广良, 孙海江. 基于SURF的抗视角变换图像匹配算法[J]. 液晶与显示, 2013, 28(4): 626-632. SU K X, HAN G L, SUN H J. Anti-view point changing image matching algorithm based on SURF[J]. Chinese journal of Liquid Crystals and Displays,2013,28(4):626-632. (in Chinese)
ABDEL-HAKIM A E, FARAG A A. CSIFT: A SIFT descriptor with color invariant characteristics [C].2006 IEEE Computer Society Conference on Proceedings of the Computer Vision and Pattern Recognition, IEEE, 2006: 1978-1983.
纪华, 吴元昊, 孙宏海,等. 结合全局信息的SIFT特征匹配算法 [J]. 光学 精密工程, 2009, 17(2): 439-444. JI H, WU Y H, SUN H H,et al.. SIFT feature matching algorithm with global information [J]. Opt.Precision Eng., 2009, 17(2): 439-444. (in Chinese)
曾峦, 王元钦, 谭久彬. 改进的SIFT特征提取和匹配算法 [J]. 光学 精密工程, 2011, 19(6): 1391-1397. ZENG L, WANG Y Q, TAN J B, Improved algorithm for SIFT feature extraction and matching [J]. Opt.Precision Eng., 2011, 19(6):1391-1397.(in Chinese)
王灿进, 孙涛, 陈娟. 局部不变特征匹配的并行加速技术研究 [J]. 液晶与显示, 2014, 29(2): 266-274. WANG C J, SUN T, CHEN J. Speeding up local invariant feature matching using parallel technology [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 266-274.(in Chinese)
0
浏览量
402
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构