浏览全部资源
扫码关注微信
1. 中国传媒大学 信息工程学院 北京,100024
2. 中国艺术科技研究所 北京,100061
收稿日期:2014-09-03,
修回日期:2014-11-01,
纸质出版日期:2015-01-25
移动端阅览
吴晓雨, 何彦, 杨磊等. 基于改进形状上下文特征的二值图像检索[J]. 光学精密工程, 2015,23(1): 302-309
WU Xiao-yu, HE Yan, YANG Lei etc. Binary image retrieval based on improved shape context algorithm[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 302-309
吴晓雨, 何彦, 杨磊等. 基于改进形状上下文特征的二值图像检索[J]. 光学精密工程, 2015,23(1): 302-309 DOI: 10.3788/OPE.20152301.0302.
WU Xiao-yu, HE Yan, YANG Lei etc. Binary image retrieval based on improved shape context algorithm[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 302-309 DOI: 10.3788/OPE.20152301.0302.
提出了改进的形状上下文算法以克服传统的形状上下文算法不具备旋转不变性这一缺点.该算法利用找寻包含采样点数最多的角度区间的方式改变图像角度
对相对应的区域进行比较
并计算匹配代价
从而为形状上下文加入旋转不变性.为提高运算速度
算法也引入了剪枝方法
解决了进行直方图距离计算时遍历采样点的问题.实验显示
本文的算法在公开数据库上测试得到的精确度召回率(PR)曲线与郑提出算法的PR曲线性能接近
但是计算速度较其提升了近1倍;与传统的形状上下文算法相比
提出算法的PR曲线更为优越
且检索精度有较大提高.因此
提出的算法综合检索性能更好
能够有效地的应用于二值图像检索领域.
An improved shape context algorithm is proposed to overcome the shortcoming of traditional shape context algorithm in lacking of rotation invariance ability. The algorithm looks for the direction where the most sampling points are included to change the image angle. Then it compares the corresponding regions in the image and calculates the match cost to add the rotation invariance ability into the algorithm. To improve the calculation speed
the pruning is induced in the algorithm to address the problem of traversing sample points in calculating the histogram distance. The experiment in the case of the same recall rate shows that the Precision Racall Line(PR) curve of proposed algorithm is closed to that of the Zheng'
but the calculating speed is double that of above mentioned. Moreover
the PR curve of this algorithm is obviously better than that of traditional shape context algorithm
and the retrieval speed is increased greatly. Therefore
the overall performance of the algorithm is improved
and it is more suitable for the binary image retrieval.
ZHAO Q, CAO J, HU Y. Image retrieval based on color-spatial distributing feature [J]. Multimedia and Signal Processing Communications in Computer and Information Science, 2012,346: 79-86.
郑晓霞. 基于纹理特征的图像检索技术研究 [D]. 哈尔滨:哈尔滨工程大学,2008. ZHENG X X. The research of image retrieval based on texture feature [D]. Harbin:Harbin Institute of Technology,2008. (in Chinese)
KEKRE H B, THEPADE S D. Image retrieval using color-texture features extracted from walshlet pyramid [J]. ICGST International Journal on Graphics, Vision and Image Processing (GVIP), 2010, 10: 9-18.
LEDWICH L, WILLIAMS S. Reduced SIFT features for image retrieval and indoor localization. Australian Conference on Robotics and Automation, 2004, 322: 3.
BELONGIE S, MALIK J, PUZICHA J. Shape context: A new descriptor for shape matching and object recognition [C]. NIPS, 2000, 2: 3.
LING H, JACOBSA D W. Shape classification using the inner-distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 286-299.
XIE J, HENG P A, SHAH M. Shape matching and modeling using skeletal context [J]. Pattern Recognition, 2008, 41(5): 1756-1767.
ROMAN-RANGEL E, PALLAN C, ODOBEZ J M, et al.. Analyzing ancient Maya glyph collections with contextual shape descriptors [J]. International Journal of Computer Vision, 2011, 94(1): 101-117.
黄伟国,顾超,朱忠奎. 用于目标识别的PCA-SC形状匹配算法 [J]. 光学 精密工程,2013,21(8):2103-2110. HUANG W G, GU CH, ZHU ZH K. PCA-SC Shape matching for object recognition [J].Opt. Precision Eng., 2013,21(8):2103-2110. (in Chinese)
郑丹晨,韩敏. 基于改进典型形状上下文特征的形状识别方法 [J]. 计算机辅助设计与图形学学报,2013,25(2): 215-220. ZHENG D CH, HAN M. Improved shape recognition method based on representative shape context [J]. Pattern Analysis and Machine Intelligence Journal of Computer-Aided Design and Computer Graphics, 2013, 25(2): 215-220. (in Chinese)
BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
SEBASTIAN T B, KLEIN P N, KIMIA B B. Recognition of shapes by editing their shock graphs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571.
0
浏览量
274
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构