浏览全部资源
扫码关注微信
1. 香港理工大学 生物医学工程跨领域学部,香港,中国,999077
2. 中国人民解放军总医院 眼科 北京,中国,100853
收稿日期:2014-05-19,
修回日期:2014-06-20,
纸质出版日期:2015-02-25
移动端阅览
王立科, 张佳莹, 田磊等. 基于光学相干层析气冲印压技术研究角膜生物力学特性[J]. 光学精密工程, 2015,23(2): 325-333
WANG Li-ke, ZHANG Jia-ying, TIAN Lei etc. OCT based air jet indentation for corneal biomechanical assessment[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 325-333
王立科, 张佳莹, 田磊等. 基于光学相干层析气冲印压技术研究角膜生物力学特性[J]. 光学精密工程, 2015,23(2): 325-333 DOI: 10.3788/OPE.20152302.0325.
WANG Li-ke, ZHANG Jia-ying, TIAN Lei etc. OCT based air jet indentation for corneal biomechanical assessment[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 325-333 DOI: 10.3788/OPE.20152302.0325.
结合频域光学相干断层层析术(SDOCT)以及空气脉冲印压技术(OCT气冲印压系统)研究了角膜的生物力学特性。采用热成型硅胶模拟角膜形态设计制作了8种不同硬度的角膜仿体
通过联接吊瓶和压力传感器控制并设定角膜仿体的前房压力。运用快速气脉冲作用于角膜
同时用OCT记录角膜整个动态形变过程
测得了角膜仿体形变参数最大压陷深度(DA)
并分析得到了反映角膜生物力学特性的硬度系数。结果显示:角膜仿体中央的实际厚度为(504.1217.04)
m
不同硬度硅胶的角膜仿体的杨氏模量为90~1 400 kPa
同一角膜仿体的杨氏模量值与模拟前房眼内压成正相关。同一眼内压下3次重复性实验表明OCT系统测量参数DA具有很高的重复性(ICC=0.992 6);不同观察者A和B的一致性实验表明
DA具有很好的一致性(差值均值为1.1
m)。不同眼压下所得仿体角膜的硬度系数与传统的拉伸实验测得的该仿体的杨氏模量具有明显的相关性(
r
=0.99
P
<
0.001)。得到的测试结果表明
OCT气冲印压系统可以用来检测角膜生物力学特性
系统测量结果精确可靠。
Spectral Domain Optical Coherence Tomography (SDOCT) and air jet indentation technology were combined to assess the corneal biomechanical properties. A corneal mold was designed to make eight different stiffness phantoms with the thermal forming method. The Intraocular Pressure (IOP) of phantom was regulated through a medicine flask and measured by a pressure sensor. The air jet excitation was applied to the cornea
and the corneal dynamic deformation was recorded to obtain corneal deformation parameter: maximum Deformation Amplitude (DA) with the OCT. Then the corneal stiffness coefficient (
k
) was calculated to represent the corneal biomechanical properties. The correlation of stiffness coefficient and Young's modulus measured by traditional strip extensiometry was analyzed and the accuracy of OCT based air jet indentation was assessed through the analysis of repeatability and consistency. The experimental results show that the central thicknesses of corneal phantoms are (504.1217.04)
m and the Young's modules of corneal phantoms range from 90 to 1 400 kPa. Moreover
there is a positive correlation between the corneal stiffness and the IOP. The experiment at the same IOP shows that it is a high repeatability for three time measurements of corneal phantom by the OCT based air jet indentation system
in which the value of ICC is 0.992 6. The measurements of DA by observers A and B are high consistency(the Difference is 1.1
m). The
k
value also exhibits a linear relationship with the Young's modulus measured by the strip extensiometry (
r
=0.99
P
<
0.001). In conclusion
this technology provides a potential non-invasive means for the assessment of corneal biomechanical properties.
BRENNER L F, ALIO J L, VEGA-ESTRADA A, et al.. Clinical grading of post-LASIK ectasia related to visual limitation and predictive factors for vision loss[J]. J. Cataract Refract. Surg., 2012,38(10):1817-1826.
JABBUR N S, SAKATANI K, O'BRIEN T P. Survey of complications and recommendations for management in dissatisfied patients seeking a consultation after refractive surgery[J]. J. Cataract Refract. Surg., 2004,30(9):1867-1874.
KONSTANTOPOULOS A, HOSSAIN P, ANDERSON D F. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis[J]. Br. J. Ophthalmol., 2007,91(4):551-557.
KOZOBOLIS V, SIDEROUDI H, GIARMOUKAKIS A, et al.. Corneal biomechanical properties and anterior segment parameters in forme fruste keratoconus[J]. Eur. J. Ophthalmol., 2012,22(6):920-930.
HUANG Y P, ZHENG Y P, WANG Z P, et al.. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues[J]. Measurement Science & Technology, 2009,20:015805.
APTEL F, CHIQUET C, GIMBERT A, et al.. Anterior segment biometry using spectral-domain optical coherence tomography[J]. J. Refract. Surg., 2014, 30(5):1-7.
ROLLE T, DALLORTO L, BRIAMONTE C, et al.. Retinal nerve fibre layer and macular thickness analysis with Fourier domain optical coherence tomography in subjects with a positive family history for primary open angle glaucoma[J]. Br. J. Ophthalmol., 2014, 98(9): 1240-1244 .
TUDOR D, KAJIC V, REY S, et al.. Non-invasive detection of early retinal neuronal degeneration by ultrahigh resolution optical coherence tomography[J]. Plos One, 2014,9(4):e93916.
GONZALEZ-MEIJOME J M, CERVINO A, CARRACEDO G, et al.. High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships[J]. Cornea, 2010,29(12): 1359-1367.
UENO Y, HIRAOKA T, BEHEREGARAY S, et al.. Age-related changes in anterior, posterior, and total corneal astigmatism[J]. J. Refract Surg., 2014,30(3): 192-197.
ZHOU Y, TIAN L, WANG N, et al.. Anterior segment optical coherence tomography measurement of LASIK flaps: femtosecond laser vs. microkeratome[J]. J. Refract Surg., 2011,27(6):408-416.
MOGHIMI S, ZANDVAKIL N, VAHEDIAN Z, et al.. Acute angle closure: qualitative and quantitative evaluation of the anterior segment using anterior segment optical coherence tomography[J]. Clin. Experiment Ophthalmol,2014, 42(7): 615-622.
HIMSCHALL N, NORRBY S, WEBER M, et al.. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation[J]. Br. J. Ophthalmol, 2015, 99(1): 7-10.
[JP1]ALONSO-CANEIRO D, KARMOWSKI K, KAL-UZNY B J, et al.. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system[J]. Opt. Express, 2011,19(15):14188-14199.
Jr AMBROSIO R, NOGUEIRA L P, CALDAS D L, et al.. Evaluation of corneal shape and biomechanics before LASIK[J]. Int. Ophthalmol Clin.,2011,51(2):11-38.
SHAH S, LAIQUZZAMAN M, BHOJWANI R, et al.. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes[J]. Invest Ophthalmol Vis. Sci., 2007,48(7):3026-3031.
LUCE D A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J]. J. Cataract Refract Surg., 2005,31(1): 156-162.
DUBBELMAN M, WEEBER H A, VAN der HEIJDE R G, et al.. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography[J]. Acta Ophthalmol Scand, 2002,80(4):379-383.
PEREZ-ESCUDERO A, DORRONSORO C, SAWIDES L, et al.. Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface[J]. Invest Ophthalmol Vis. Sci., 2009,50(9):4146-4154.
KURITA Y, KEMPF R, IIDA Y, et al.. Eye stiffness measurement by probe contact method[J]. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006,1: 2312-2315.
ZHENG Y P, CHEN J G, LING H Y. Development of an ultrasound platform for the evaluation of planter soft tissue properties: a feasibility study on silicone phantom feet[J]. Instrumentation Science & Technology,2011,39(3):248-260.
GEFEN A, SHALOM R, ELAD D, et al.. Biomechanical analysis of the keratoconic cornea[J]. J. Mechanical Behavior of Biomedical Meterials,2009,2(3):224-236.
0
浏览量
692
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构