浏览全部资源
扫码关注微信
吉林大学 仪器科学与电气工程学院,吉林 长春,130026
收稿日期:2014-06-19,
修回日期:2014-08-15,
纸质出版日期:2015-02-25
移动端阅览
王智宏, 张福东, 滕飞等. 基于近红外波长组合快速检测油页岩含油率[J]. 光学精密工程, 2015,23(2): 371-377
WANG Zhi-hong, ZHANG Fu-dong, TENG Fei etc. Rapid detection of oil yield of oil shale by combination of wavelengths in near infrared spectroscopy[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 371-377
王智宏, 张福东, 滕飞等. 基于近红外波长组合快速检测油页岩含油率[J]. 光学精密工程, 2015,23(2): 371-377 DOI: 10.3788/OPE.20152302.0371.
WANG Zhi-hong, ZHANG Fu-dong, TENG Fei etc. Rapid detection of oil yield of oil shale by combination of wavelengths in near infrared spectroscopy[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 371-377 DOI: 10.3788/OPE.20152302.0371.
为实现油页岩含油率的快速单点测量
研究了基于近红外波长组合的油页岩含油率快速检测方法。以高岭土与机油混合的模拟样品为研究对象
利用便携式近红外光谱分析技术
研究了近红外波长组合选择方法。该方法采用自制的便携式光谱仪获得全光谱反射率数据
结合微分和多元散射校正数据处理及相关系数法进行波长初步筛选
将组合生成算法与留一交互校验多元线性回归(MLR)建模相结合
确定最佳波长组合
并用MLR建模对单点测量获得的最佳波长组合光谱数据进行了实验验证。结果表明:最佳波长组合为1 644
1 720
2 210
2 260 nm
30个建模样品的校正集和预测集的决定系数为0.995 4和0.997 7
11个验证样品的验证集的决定系数为0.990 1。该方法为研制基于单点测量的油页岩含油率快速检测光谱仪提供了基础。
To detect rapidly the oil yield of an oil shale on a single point measurement
a detection method was proposed based on combination of wavelengths by a portable near infrared spectroscopy. By taking the kaolin mixed with oil simulating samples as the research object
how to select the combination of wavelengths by near infrared spectroscopy was performed. With proposed method
the full spectral reflectivity data were firstly acquired by the developed portable spectrometer. Then the preliminary selection for the combination of wavelengths was implemented by differential multiplicative scatter correction method and correlation coefficient method
and the optimum combination of wavelengths was determined by combination generation method and leave one cross validation Multiple Linear Regression (MLR). Finally
the data for the optimum combination of wavelengths were verified by MLR modeling. The results show that the optimum combination of wavelengths is 1 644
1 720
2 210 and 2 260 nm
and the determination coefficients for calibration set (
R
c
2
)
prediction set (
R
p
2
) of 30 modeling samples and validation (
R
p
2
) of 11 validation samples are 0.995 4
0.997 7 and 0.990 1
respectively. The method provides a basis for design of a rapid detecting spectrometer in oil yields of oil shapes.
YOUNGQUIST W. Shale oil-the elusive energy[Z]. Hubbert Center Newsletter,1988,4:1-8.
中华人民共和国石油化工行业标准.油页岩含油率测定法——低温干馏法[S].1992.
SH/T 0508-92. The Mensuration of Oil Yield form Oilshale-Low Temperature Carbonization[S].1992. (in Chinese)
PASSEY Q R,CREANEY S,KULLA J B,et al.. A pratical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74(12): 1777-1794.
贺君玲,邓守伟,陈文龙,等. 利用测井技术评价松辽盆地南部油页岩[J].吉林大学学报:地球科学版, 2006,36(6):909-914.
HE J L,DENG SH W,CHEN W L,et al.. Evaluation of oil shale in the Sourthern Songliao basin using logging technique[J].Journal of Jilin University:Earth Scientce Edition,2006,36(9):909-914. (in Chinese)
褚小立.化学计量学方法与分子光谱分析技术[M].北京化学工业出版社, 2011: 47,61-68, 75-76,80,89,259.
ZHU X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and its Applications[M]. Beijing:Chemical Industry Press, 2011:47,61-68,75-76,80,89,259. (in Chinese)
谷筱玉,徐可欣,汪嬿,等.波长选择算法在近红外光谱学中药有效成分测量中的应用[J].光谱学与光谱分析, 2011, 31(1): 91-94.
GU X Y, XU K X, WANG Y,et al.. Application of wavelength selection algorithm to measure the effective component of chinese medicine based on near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 91-94. (in Chinese)
陆婉珍.现代近红外光谱分析技术(第二版)[M].中国石化出版社,2006:1-11,30-31, 306-334.
LU W ZH.The Modern Analysis Technique of Near-Infrared Spectrum[M].2nd Ed..Beijing:China Petrochemical Press,2006:1-11,30-31, 306-334. (in Chinese)
王智宏,刘杰,王静茹,等.数据预处理方法对油页岩含油率近红外光谱分析的影响[J].吉林大学学报:工学版,2013,43(4):1017-1022.
WANG ZH H,LIU J,WANG J R,et al..Influence of data preprocessing on NIRS analysis for oil yield of oil shale[J].Journal of University:Engineering and Technology Edition,2013,43(4):1017-1022. (in Chinese)
李素义,嵇艳鞠,刘伟宇,等.小波变换与神经网络融合法在油页岩近红外光谱分析中的应用[J].光谱学与光谱分析,2013,13(4):968-971.
LI S Y,JI Y J,LIU W Y,et al.. Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale[J]. Spectroscopy and Spectral Analysis, 2013,13(4):968-971. (in Chinese)
介邓飞,谢丽娟,饶秀勤,等. 近红外光谱变量筛选提高西瓜糖度预测模型精度[J].农业工程学报,2013,29(12):264-270.
JIE D F, XIE L J, RAO X Q, et al.. Improving accuracy of prediction model for soluble solids content of watermelon by variable selection based on near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12):264-270. (in Chinese)
石吉勇,邹小波,赵杰文,等.BiPLS结合模拟退火算法的近红外光谱特征波长选择研究[J].红外与毫米波学报,2011,30(5):458-462.
SHI J Y,ZOU X B,ZHAO J W,et al.. Selection of wavelength for strawberry NIR spectroscopy based on BIPLS combined with SAA[J].J.Infrared Millim. Waves, 2011,30(5):458-462. (in Chinese)
尹慧敏.基于波长组合的多元线性回归在近红外光谱波长优选中的应用[J].红外,2010,31(10):31-34.
YIN H M.Application of multiple linear regression based on wavelength combinations in near-infrared spectral wavelength optimization[J].Infrared, 2010,31(10):31-34. (in Chinese)
申艳,张晓平,梁爱珍,等.多元散射校正和逐步回归法建立黑土有机碳近红外光谱定量模型[J].农业系统科学与综合研究,2010,26(2):175-179.
SHEN Y,ZHANG X P,LIANG A ZH,et al..Multiplicative scatter correction and stepwise regression to build NIRS model for analysis of soil organic carbon content in black soil[J].System Sciences and Comprehensive Studies in Agriculture,2010, 26(2):175-179.(in Chinese)
0
浏览量
649
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构