浏览全部资源
扫码关注微信
天津大学 精密测试技术及仪器 国家重点实验室 天津,300072
收稿日期:2014-06-05,
修回日期:2014-08-14,
纸质出版日期:2015-02-25
移动端阅览
赵建远, 李醒飞, 田凌子. 动力调谐陀螺仪子空间辨识[J]. 光学精密工程, 2015,23(2): 423-429
ZHAO Jian-yuan, LI Xing-fei, TIAN Ling-zi. Subspace identification for dynamically tuned gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 423-429
赵建远, 李醒飞, 田凌子. 动力调谐陀螺仪子空间辨识[J]. 光学精密工程, 2015,23(2): 423-429 DOI: 10.3788/OPE.20152302.0423.
ZHAO Jian-yuan, LI Xing-fei, TIAN Ling-zi. Subspace identification for dynamically tuned gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 423-429 DOI: 10.3788/OPE.20152302.0423.
针对传统子空间辨识法(SIM)用于动力调谐陀螺仪(DTG)建模过程中存在的结构参数复杂、干扰因素未知、建模精度不高等问题
提出了一种改进的子空间辨识方法。首先
确定辨识对象DTG的状态空间模型集
分析DTG输出信号中存在的固有有色噪声。然后
针对有色噪声的干扰问题
对传统SIM进行改进
通过数据Hankel矩阵的正交投影消除传统SIM的有偏性。最后
在数值仿真中引入置信椭圆
对改进算法进行统计特性分析。仿真结果表明:在不同强度有色噪声干扰下
改进算法无偏
方差特性与有色噪声强度和数据长度有关。辨识实验表明:改进SIM的辨识效果明显优于传统SIM
辨识拟合度优于90%。得到的结果显示改进算法能够应用于DTG系统建模。
To deal with the problems of complex structure parameters
unknown interference factors and lower modeling precision in the Dynamically Tuned Gyroscope (DTG) mechanism modeling by the traditional Subspace Identification Method(SIM)
an improved SIM was proposed. Firstly
the DTG state space model sets were determined and DTG inherent colored noises were discussed. Then
the traditional SIM were modified for the colored noise problem and the orthogonal projection of a data Hankel matrix was used to eliminate the SIM bias of traditional method. Finally
a confidence ellipse was introduced in the numerical simulation to analyze the statistics feature of the modified algorithm. Simulation results indicate that the identified results of modified algorithm are unbiased at different colored noise influences
and the variance is related to the noise strength and data length. The identification experiments show that the identification performance of modified SIM is apparently better than that of the traditional SIM
and the identification fitting degree is more than 90%
which means that the modified algorithm is suitable for the DTG system modeling.
李醒飞,杨光,等.动力调谐陀螺锁定回路解耦控制一体化设计[J].纳米技术与精密工程,2012,10(5):439-444.
LI X F, YANG G. Integrated design of decoupling and control for dynamically tuned gyroscope lock loop [J]. Nanotechnology and Precision Engineering, 2012, 10(5):439-444. ( in Chinese)
张连超,范世珣,范大鹏,等. 动力调谐陀螺仪再平衡回路数字化的研究与实现[J].光学 精密工程,2007,15(12): 1975-1981.
ZHANG L CH, FAN SH X, FAN D P, et al.. Research and implementation of digital control of dynamically tuned gyroscope rebalance loop [J]. Opt. Precision Eng., 2007, 15(12): 1975-1981. (in Chinese)
GANDINO E, GARIBALDI L, MARCHESI S.Covariance driven subspace identification: A complete input output approach [J]. Journal of Sound and Vibration, 2013, 332(26):7000-7017.
ZHANG J B, LU C, HAN Y D. MIMO identification of power system with low level probing tests: applicability comparison of subspace methods [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2907-2917.
HUANG B,DING S X,QIN S J.Closed-loop subspace identification: an orthogonal projection approach [J]. Journal of Process Control, 2005, 15(1):53-66.
MOOR V. Subspace Identification for Linear Systems [M]. London: Kluwer Academic Publishers, 2002.
LIU T, SHAO C, WANG X. Consistency analysis of orthogonal projection based closed loop subspace identification methods [C]. 2013 European Control Conference, ECC 2013, 2013: 1428-1432.
CHIUSO A, PICCI G. Asymptotic variances of subspace estimates [C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, U.S.A, 2001: 3910-3915.
CHIUSO A, PICCI G. Numerical conditioning and asymptotic variance of subspace estimates [J]. Automatica, 2004, 40(4): 677-683.
OKU H, KIMURA H. Recursive 4SID algorithms using gradient type subspace tracking [J]. Automatica, 2002, 38(6): 1035-1043.
OKU H. Recursive subspace model identification algorithms for slowly time-varying systems in closed loop [C]. In Proc. of the ECC’07, Kos, Greece, 2007.
KAREL J K. System Identification [M]. Springer London Ltd, 2011.
ESMAILI A,MACGREGOR J F,TAYLOR P A. Direct and two-step methods for closed-loop identification: a comparison of asymptotic and finite data set performance [J]. Journal of Process Control, 2000, 10(6):525-537.
张刚,刘品宽,张波,等. 直线电机精密运动平台轨迹跟踪控制器设计[J].光学 精密工程,2013,21(2): 373-379.
ZHANG G, LIU PK, ZHANG B, et al.. Design of trajectory tracking controller for precision positioning table driven by linear motor [J]. Opt. Precision Eng., 2013, 21(2): 373-379. (in Chinese)
肖前进,贾宏光,章家保,等. 电动舵机伺服系统非线性辨识及补偿[J].光学 精密工程,2013,21(8):2040-2047.
XIAO Q J, JIA H G, ZHANG J B, et al.. Identification and compensation of nonlinearity for electromechanical actuator servo system [J]. Opt. Precision Eng., 2013, 21(8):2040-2047. (in Chinese)
LJUNG L. System Identification: Theory for the User [M]. Prentice Hall PTR, 1999.
0
浏览量
481
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构