浏览全部资源
扫码关注微信
中国科学院 电子学研究所 传感技术国家重点实验室 北京,100190
收稿日期:2014-04-18,
修回日期:2014-05-07,
纸质出版日期:2015-02-25
移动端阅览
何文涛, 陈德勇, 王军波等. MEMS宽带电化学地震检波器[J]. 光学精密工程, 2015,23(2): 444-451
HE Wen-tao, CHEN De-yong, WANG Jun-bo etc. MEMS based broadband electrochemical seismometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 444-451
何文涛, 陈德勇, 王军波等. MEMS宽带电化学地震检波器[J]. 光学精密工程, 2015,23(2): 444-451 DOI: 10.3788/OPE.20152302.0444.
HE Wen-tao, CHEN De-yong, WANG Jun-bo etc. MEMS based broadband electrochemical seismometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 444-451 DOI: 10.3788/OPE.20152302.0444.
针对深部油气勘探的需要
研制了基于微机电系统(MEMS)的宽带电化学地震检波器。仿真分析了影响该检波器频带的结构参数
并对其MEMS实现及封装方法进行了研究。利用有限元软件分析绝缘层厚度和阴极孔径对检波器幅频特性的影响
得到了优化的几何参数。基于仿真结果
利用MENS工艺加工硅基的Pt电极和Su-8的绝缘层
然后用物理紧固的方法进行器件封装。最后
分别在水平振动台和基岩上进行了检波器的性能测试和微震监测实验。实验结果表明:无需进行频率补偿
由20
μ
m孔径阴极和200
μ
m厚绝缘层封装的器件的频带可扩展到3~90 Hz
低频扩展到60 S的补偿额度小于30 dB
检波器的动态范围不小于130 dB。实验显示:这种改进的检波器可以作为宽带地震检波器用于深部或海底的油气勘探。
On the basis of Micro-electro-mechanical System(MEMS)
a broadband electrochemical seismometer was developed. The structure parameters related to the seismometer were analyzed and a developing scheme based on MEMS technology was presented to extend the frequency band of the seismometer to a wider range. The effects of the lengths of insulating spacers and the pore widths in cathodes on the seismometer property were discussed by numerical simulation and the optimized structure parameters were obtained. Then
according to simulation results
the Su-8 series photoresist and a silicon wafer were applied to fabrication of spacers and electrodes with optimized sizes. These devices were packaged via a physical fastening method to avoid the leakage of electrolyte. Finally
the device characteristics were measured through frequency response test on a horizontal vibration platform and a micro seismic monitoring experiment was performed on the bedrock. Test results without frequency compensation demonstrate that the frequency band of the device packaged with spacers with thickness of 200
μ
m and cathodes with wide pores of 20
μ
m has reached 3-90 Hz
the fade degree at 60 S is less than 30 dB
and the seismometer's dynamic range is no less than 130 dB. This improved seismometer may function as a detecting device covering a wide frequency range in the marine oil exploration.
HAVSKOV J, ALGUACIL G. Instrumentation in Earthquake Seismology [M]. Dordrecht: Springer, 2010.
NIU F, SILVER P G, DALEY T M, et al.. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site [J]. Nature, 2008, 454: 204-208.
VAN HERWIJNEN A, SCHWEIZER J. Monitoring avalanche activity using a seismic sensor [J]. Cold Regions Science and Technology, 2011, 69: 165-176.
HUANG H, CARANDE B, TANG R, et al.. A micro seismometer based on molecular electronic transducer technology for planetary exploration [J]. Applied Physics Letters, 2013, 102: 193512.
LIANG T C, LIN Y L. A fiber-optic sensor for the ground vibration detection [J]. Optics Communications, 2013, 306: 190-197.
LEVINZON F A. Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier [J]. IEEE Sensors J., 2012, 12: 2262-2268.
KUHNE S, KIKO T, CAVALLONI C. High-G and high bandwidth characterization of piezoresistive MEMS accelerometers for crash test applications [C]. Proceedings of Sensors 2013, Berlin, Germany, AMA, 2013: 41-45.
ZHANG G H, HU S Y. Dynamic characteristics of moving-coil geophone with large damping [J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33: 565-571.
BAKHOUM E G,CHENG M H. Frequency-selective seimmic sensor [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61: 823-829.
HONS M, STEWART R, LAWTON D, et al.. Field data comparisons of MEMS accelerometers and analog geophones [J]. The Leading Edge, 2008, 27: 896-903.
PENG F, YANG J, LI X L, et al.. In-fiber integrated accelerometer [J]. Optics Letters, 2011, 36: 2056-2058.
唐东林,郭峰,代志勇,等. 基于光弹效应的三分量光弹波导加速度传感器 [J]. 光学 精密工程, 2009, 17(5) 985-989.
TANG D L,GUO F, DAI ZH Y, et al.. Three-component photoelastic waveguide accelerometer based on photoelastic effect [J]. Opt. Precision Eng., 2009, 17(5) 985-989.
LEVCHENKO D G, KUZIN I P, SAFONOV M V, et al.. Experience in seismic signal recording using broadband electrochemical seismic sensors [J]. Seismic Instruments, 2010, 46: 250-264.
KOZLOV V A, AGAFONOV V M, BINDLER J. Small, low-power, low-cost sensors for personal navigation and stabilization systems [C]. Proceeding of the 2006 National Technical Meeting of The Institute of Navigation, Monterey,2006:650-655.
王喜珍,滕云田.地震传感器的新技术与发展[J]. 地球物理学进展,2010, 25(2):478-485.
WANG X ZH, TENG Y T. New technology of seismic sensors and development [J]. Progress in Geophysics, 2010, 25: 478-485.
IGOR A. ABRAMOVICH, TAO ZH. Next generation robust low noise seismometer for nuclear monitoring [C]. Proceeding of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Portsmouth: USA, 2008: 329-337.
KOZLOV V A, SAFONOV M V. Dynamic characteristic of an electrochemical cell with gauze electrodes in convective diffusion conditions [J]. Russian Journal of Electrochemistry, 2004, 40: 460.
HE W T, CHEN D Y, LI G B. Low frequency electrochemical accelerometer with low noise based on MEMS [J]. Key Engineering Materials, 2012, 503: 75-80.
CHEN D Y, LI G B,WANG J B,et al.. A micro electrochemical seismic sensor based on MEMS technologies [J]. Sensors and Actuators A: Physical, 2013, 202: 85-89.
DENG T, CHEN D Y, WANG J B, et al.. A MEMS based electrochemical vibration sensor for seismic motion monitoring [J]. IEEE J. MEMS, 2014,23:92-99.
AGAFONOV V M, KRISHTOP V G. Diffusion sensor of mechanical signals: Frequency response at high frequencies [J]. Russian Journal of Electrochemistry, 2004, 40: 537.
HUANG H, AGAFONOV V, YU H Y. Molecular electric transducers as motion sensors: A review [J]. Sensors, 2013, 13: 4581-4597.
KRISHTOP V G, AGAFONOV V M, BUGAEV A S. Technological principles of motion parameter transducers based on mass and charge transport in electrochemical microsystems [J]. Russian Journal of Electrochemistry, 2012, 48: 746.
KOZLOV V A, TERENT’EV D A. Frequency characteristics of a spatially-confined electrochemical cell under conditions of convective diffusion [J]. Russian Journal of Electrochemistry, 2002, 38: 992-999.
BARD A J, FAULKNER L R. Electrochemical Methods Fundamentals and Applications [M]. New York: John Wiley & Sons Inc.
SUN Z,AGAFONOV V M. Numerical modeling of a four-electrode electrochemical accelerometer based on natural convection: The boussinesq flow model vs The compressible flow model [J]. Russian Journal of Electrochemistry, 2012, 48: 835-842.
0
浏览量
308
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构