浏览全部资源
扫码关注微信
1. 大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连,116023
2. 大连理工大学 微纳米技术及系统辽宁省重点实验室,辽宁 大连,中国,116023
收稿日期:2014-06-09,
修回日期:2014-07-30,
纸质出版日期:2015-02-25
移动端阅览
祁娜, 罗怡, 王晓东等. 聚合物超声压印非成形面熔融缺陷形成机理及抑制[J]. 光学精密工程, 2015,23(2): 452-458
QI Na, LUO Yi, WANG Xiao-dong etc. Mechanism and avoiding of polymer melting on non-forming surface during ultrasonic embossing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 452-458
祁娜, 罗怡, 王晓东等. 聚合物超声压印非成形面熔融缺陷形成机理及抑制[J]. 光学精密工程, 2015,23(2): 452-458 DOI: 10.3788/OPE.20152302.0452.
QI Na, LUO Yi, WANG Xiao-dong etc. Mechanism and avoiding of polymer melting on non-forming surface during ultrasonic embossing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 452-458 DOI: 10.3788/OPE.20152302.0452.
分析了聚合物超声压印工艺中基片非成形面产生熔融的原因
并提出了相应的抑制方法。基于超声波产热机理指出非成形面熔融现象是由超声工具头-基片界面摩擦引起的
据此提出"摩擦系数差法"来抑制非成形面的熔融现象并通过在聚合物基片非成形面增加表面保护膜(背膜)的手段实现了"摩擦系数差法"。为了对背膜进行优化选择
对比研究了4种背膜条件对聚合物软化时间的影响。提出了超声工具头位移-时间曲线极小值点对应聚合物软化时间的观点
并通过测量超声压印过程中基片-模具界面温度进行了实验验证。实验结果表明
使用Sekisui #622E-50保护膜可缩短聚合物软化时间3.4 s
使用Sekisui #622WB保护膜则可降低软化时间误差0.64 s。实验显示:增加背膜不仅有效地避免了非成形面的熔融现象
同时缩短了超声压印过程中的聚合物软化时间并提高了软化时间重复性。
This paper analyzes the reason why the polymer is melted on a non-forming surface during ultrasonic embossing and proposes a method to inhibit the polymer melting. On the basis of the heating mechanism of ultrasonic
it points out that the polymer melting phenomenon on non-forming surface is resulted by the friction in a horn-substrate interface. Then
it proposed the method "two interfaces of different friction coefficients" to inhibit the polymer melting and implemented the method by coatings surface protection films on the non-forming surface. To optimize the protection films
and the influences of the four coating film conditions on the softening time are examined through Taguchi method. The results show that the Sekisui #622E-50 film shortens the softening time by 3.4 s and the Sekisui #622WB film reduces the softening time error by 0.64 s. It demonstrates that surface protection films coated can avoid polymer melting on the non-forming surface
and improve the process replication ability and the process stability in ultrasonic embossing.
罗怡, 王晓东, 杨帆, 等. 变温蠕变实验COP微流控芯片热压制备[J]. 光学 精密工程, 2007,15(7): 1090-1095.
LUO Y, WANG X D, YANG F, et al.. Variable temperature quasi-creep experiment for fabrication of microfluidic chip using Cycio-Olefin Polymer (COP) [J]. Opt. Precision Eng., 2007, 15(7): 1090-1095. (in Chinese)
宋满仓,刘莹,祝铁丽, 等. 塑料微流控芯片的注塑成形[J]. 纳米技术与精密工程, 2011, 9(4): 229-334.
SONG M C, LIU Y, ZHU T L, et al.. Injection molding of plastic microfluidic chip [J]. Nanotechnology and Precision Engineering, 2011, 9(4): 229-334.(in Chinese)
蒋炳炎, 申瑞霞, 沈龙江, 等. 注射成型工艺参数对微结构零件复制度的影响[J]. 光学 精密工程, 2008, 16(2): 249-256.
JIANG B Y, SHEN R X, SHEN L J, et al.. Influence of processing parameters in injection molding on replication fidelity of microstructure parts[J]. Opt. Precision Eng., 2008, 16(2): 249-256. (in Chinese)
张平, 胡亮红, 刘永顺. 主辅通道型微混合器的设计与制作[J]. 光学 精密工程, 2010, 18(4): 872-879.
ZHANG P, HU L H, LIU Y SH. Design and fabrication of micromixer with main-assist channels [J]. Opt. Precision Eng., 2010, 18(4): 872-879.(in Chinese)
杨潞霞, 郝晓剑, 王春水,等.具有三维聚焦功能的微流控芯片[J]. 光学 精密工程, 2013, 21(9):2309-2316.
YANG L X, HAO X J, WANG CH SH, et al.. Three-dimensional focusing microfluidic chip [J]. Opt. Precision Eng., 2013, 21(9): 2309-2316. (in Chinese)
YANG C,YIN X H,CHENG G M. Microinjection molding of microsystem components: new aspects in improving performance [J]. J. Micromech. Microeng, 2013, 23: 093001.
LIU SH J,DUNG Y T. Hot embossing precise structure on to plastic plates by ultrasonic vibration [J]. Polymer Engineering and Science, 2005: 915-925.
LIU SH J,HUANG Y CH,YANG S Y, et al.. Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing [J]. Optics & Laser Technology, 2010, 42: 794-798.
LIU S J,HUANG Y C. Manufacture of dual-side surface-relief diffusers with various cross angles using ultrasonic embossing technique [J]. Optics Express, 2009, 17(20): 18083.
YOUNG H C, YOUNG S S, YONG M, et al.. Facile fabrication of superhydrophobic poly(methyl methacrylate) substrates using ultrasonic imprinting [J]. J. Micromech. Microeng, 2013,23:055019-1-7.
HARUTAKA M,MASAHARU T. Ultrasonic nanoimprint on engineering plastics [J]. J. Vac. Sci. Technol. A., 2009, 27(4): 785-792.
LIN CH H,CHEN R SH. Ultrasonic nanoimprint lithography: a new approach to nanopatterning [J]. Microlith., Microfab., Microsyst., 2006, 5(1): 011003-1-6.
LIN CH H,WANG CH Y,CHEN R SH. Assisted-heating for ultrasonic nanoimprint lithography [C]. 9th IEEE Conference on Nanotechnology, 2009.
HARUTAKA M, OSAMU N, OSAMU M, et al.. Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration [J]. Microsyst Technol., 2007, 13:385-391.
HARUTAKA M, HIROSHI G, MASAHARU T. Development of ultrasonic micro hot embossing technology [J]. Microelectronic Engineering, 2007, 84:1282-1287.
HARUTAKA M, TOSHIHIKO N, HIROSHI G, et al.. Effect of applying ultrasonic vibration in thermal nanoimprint lithography[J]. Microsyst Technol., 2008, 14:1325-1333.
李永新,黎源倩,渠凌丽,等. 微流控芯片-激光诱导荧光快速检测4种食源性致病菌[J]. 分析化学. 2008,36(12): 1667-1671.
LI Y X, LI Y Q, QU L L,et al.. Microfluidic chip electrophoresis with laser-induced fluorescence detection for rapid analysis of four foodborne pathogenic bacteria [J]. Chinese Journal of Analytical Chemistry, 2008,36(12): 1667-1671. (in Chinese)
ZHANG Z B,WANG X D,LUO Y, et al.. Study on heating process of ultrasonic welding for thermoplastics[J]. J. Thermoplast Compos. Mater., 2009, 23:647-664.
0
浏览量
389
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构