浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
收稿日期:2014-05-20,
修回日期:2014-06-27,
纸质出版日期:2015-02-25
移动端阅览
姜劭栋, 苏岩, 施芹等. 双质量振动式硅微陀螺理论和实验模态分析[J]. 光学精密工程, 2015,23(2): 467-476
JIANG Shao-dong, SU Yan, SHI Qin etc. Theory and experimental modal analysis of dual-mass vibrating silicon micro-gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 467-476
姜劭栋, 苏岩, 施芹等. 双质量振动式硅微陀螺理论和实验模态分析[J]. 光学精密工程, 2015,23(2): 467-476 DOI: 10.3788/OPE.20152302.0467.
JIANG Shao-dong, SU Yan, SHI Qin etc. Theory and experimental modal analysis of dual-mass vibrating silicon micro-gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 467-476 DOI: 10.3788/OPE.20152302.0467.
考虑硅微陀螺的设计和结构优化
研究了陀螺固有频率及模态对其性能的影响。针对本课题组研制的双质量振动式硅微陀螺
利用能量法建立了固有频率的理论公式
对硅微陀螺的低阶模态进行了理论分析
并利用有限元仿真和实验对理论分析结果进行了验证。结果显示:理论分析结果与仿真结果的最大误差为8.6%
与实验结果的最大误差为10.6%。利用Allan方差分析法对陀螺进行了静态性能实验
结果显示其角度随机游走为0.0578(°)/hr
1/2
零偏不稳定性为0.459(°)/hr。与传统的单纯依靠有限元仿真的模态定阶相比
本文建立的理论模型可以省略繁琐的结构参数调整过程
更高效地完成陀螺模态定阶
而且可用于陀螺的结构优化过程。
For designing silicon micro-gyroscopes and optimizing their structures
the effects of intrinsic frequency and modal of a silicon micro-gyroscope on its performance were researched. On the basis of energy theorem
a theoretical formula of the intrinsic frequency was established
and the lowest frequency mode of the dual-mass vibrating silicon micro-gyroscope was analyzed. Then the analytical results were validated by the Finite Element Method (FEM) simulation and the experiment. Analysis results show that the largest analytical errors with respect to simulation and experiment are 8.6% and 10.6%
respectively. Moreover
the Allan Variance analysis was used to conduct a static performance experiment
and the results demonstrate that the Angle Random Walk (ARW) is 0.057 8(°)/hr
1/2
and the measured bias instability is 0.459(°)/hr. As compared with the traditional modal ordering method depending on the FEM
the proposed theoretical model avoids complex structure parameter adjustment processing
complements modal ordering of the silicon micro-gyroscope and can be used in the structure optimization of the silicon micro-gyroscope.
施芹,苏岩,裘安萍,等. MEMS陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8): 1987-1992.
SHI Q, SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscopes [J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)
李建利,房建成,盛蔚,等. 双质量块调谐输出式硅MEMS陀螺仪的理论计算及仿真[J]. 光学 精密工程, 2008, 16(3): 484-491.
LI J L, FANG J CH, SHENG W, et al.. Calculation and simulation of silicon MEMS gyroscope with dual-mass resonant output [J]. Opt. Precision Eng., 2008, 16(3):484-491. (in Chinese)
姜劭栋,裘安萍,施芹,等. 硅微陀螺仪正交耦合系数的计算及验证[J]. 光学 精密工程, 2013, 21(1): 87-93.
JIANG SH D, QIU A P, SHI Q, et al.. Calculation and verification of quadrature coupling coefficient of silicon microgyroscope [J]. Opt. Precision Eng., 2013, 21(1): 87-93. (in Chinese)
BERNSTEIN J, CHO S, KING A T, et al.. A micromachined comb-drive tuning fork rate gyroscope[C]. Micro Electro Mechanical Systems, MEMS, 1993,93:143-148.
TRUSOV A A, SCHOFIELD A R, SHKEL A M. Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering[J]. Sensors and Actuators A: Physical, 2011, 165(1): 26-34.
WEINBERG M S, KOUREPENIS A. Error sources in in-plane silicon tuning-fork MEMS gyroscopes [J]. Microelectromechanical Systems,2006, 15(3): 479-491.
APOSTOLYUK V. Theory and Design of Micromechanical Vibratory Gyroscopes[M]. VS:Springer, 2006: 173-195.
WHITE R D. Effects of impact and vibration on the performance of a micromachined tuning fork gyroscope[D]. Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.
YOON S W, LEE S, NAJAFI K. Vibration-induced errors in MEMS tuning fork gyroscopes[J]. Sensors and Actuators A: Physical, 2012, 180: 32-44.
FEDDER G K. Simulation of microelectromechanical systems[D]. California:University of California, 1994.
IYER S V. Modeling and Simulation of Non-idealities in a Z-axis CMOS-MEMS Gyroscope[D]. Carnegie-Mellon University, 2003.
M'CLOSKEY R T, GIBSON S, HUI J. Modal parameter identification of a MEMS gyroscope[C]. American Control Conference,IEEE, 2000, 3: 1699-1704.
李锦明. 高信噪比电容式微机械陀螺的研究[D]. 太原:中北大学, 2005.
LI J M. Research on high signal-noise ratio of capacitive micromechanical gyroscope[D]. Taiyuan:North University of China, 2005. (in Chinese)
BORESI A P, SCHMIDT R J, SIDEBOTTOM O M. Advanced Mechanics of Materials[M]. New York: Wiley, 1993.
SOKOLNIKOFF I S, SPECHT R D. Mathematical theory of elasticity[M]. New York: McGraw-Hill, 1956.
0
浏览量
590
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构