浏览全部资源
扫码关注微信
1. 北京邮电大学 信息光子学与光通信研究院 北京,100876
2. 北京信息科技大学 光电测试技术北京市重点实验室 北京,100192
收稿日期:2014-07-17,
修回日期:2014-09-11,
纸质出版日期:2015-02-25
移动端阅览
林义闽, 吕乃光, 娄小平等. 用于弱纹理场景三维重建的机器人视觉系统[J]. 光学精密工程, 2015,23(2): 540-549
LIN Yi-min, L&#220, Nai-guang etc. Robot vision system for 3D reconstruction in low texture environment[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 540-549
林义闽, 吕乃光, 娄小平等. 用于弱纹理场景三维重建的机器人视觉系统[J]. 光学精密工程, 2015,23(2): 540-549 DOI: 10.3788/OPE.20152302.0540.
LIN Yi-min, L&#220, Nai-guang etc. Robot vision system for 3D reconstruction in low texture environment[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 540-549 DOI: 10.3788/OPE.20152302.0540.
为了实现机器人在弱纹理场景中的避障和自主导航
构建了由双目相机和激光投点器构成的主动式双目视觉系统。对立体视觉密集匹配问题进行了研究:采用激光投点器投射出唯一性和抗噪性较好的光斑图案
以增加场景的纹理信息;然后
基于积分灰度方差(IGSV)和积分梯度方差(IGV)提出了自适应窗口立体匹配算法。该算法首先计算左相机的积分图像
根据积分方差的大小确定匹配窗口内的图像纹理质量
然后对超过预设方差的阈值与右相机进行相关计算
最后通过遍历整幅图像得到密集的视差图。实验结果表明:该视觉系统能够准确地恢复出机器人周围致密的3D场景
3D重建精度达到0.16 mm
满足机器人避障和自主导航所需的精度。与传统的算法相比
该匹配方法的图像方差计算量不会随着窗口尺寸的增大而增加
从而将密集匹配的运算时间缩短了至少93%。
To realize the obstacle avoidance and automatic navigation of a robot in a low texture environment
an active stereo visual system consisting a binocular camera and a compact laser projector was established. The dense stereo matching algorithm was investigated. Firstly
the compact laser projector generated the spot patterns with excellent uniqueness and anti-noise performance for increasing the texture information. Then
an adaptive-window matching algorithm was proposed based on Integral Grayscale Variance(IGSV)and Integral Gradient Variance(IGV). The algorithm was used calculate the integral variance in a matching window using the integral image obtained by the left image. If it was greater than the variance threshold
the correlation between the left and right image pixels was calculated to get the dense disparity maps. Experimental results show that the vision system accurately gets the 3D dense scene around the robot and the 3D reconstruction accuracy is 0.16 mm
which is suitable for the obstacle avoidance and automatic navigation. As compared with the traditional methods
the computation cost of dense matching has at least decreased by 93% since the computation used for image variance could not increase with the size of the matching window.
朱遵尚,苑云,李由,等. 嫦娥一号月面成像的高精度匹配及月貌三维重建[J].光学学报,2014,34(2):0211002-9.
ZHU Z SH, YUAN Y, LI Y, et al.. High precision matching and 3D surface reconstruction of Chang'E 1 lunar images [J]. Acta Optica Sinica, 2014, 34(2): 0211002-9. (in Chinese)
张来刚, 魏仲慧, 何昕, 等. 面向低纹理图像的快速立体匹配[J]. 液晶与显示, 2013, 28(3): 450-458.
ZHANG L G, WEI ZH H, HE X, et al.. New stereo matching method based edge extraction[J]. Chinese Journal of Liquid Crystals and Displays, 2013,28(3): 450-458. (in Chinese)
周自维,樊继壮,李戈,等. 支撑点扩展快速立体匹配方法的设计与应用[J]. 光学 精密工程, 2013, 21(1): 207-216.
ZHOU Z W, FAN J ZH, LI G, et al.. Design and application of fast matching method based on support point expansion[J]. Opt. Precision Eng., 2013, 21(1): 207-216. (in Chinese)
卢阿丽,唐振民. 利用自适应窗口实现不连续保护立体匹配[J]. 光学 精密工程, 2009, 17(9): 2328-2335.
LU A L, TANG ZH M. Discontinuity preserving stereo matching using variable window[J]. Opt. Precision Eng., 2009, 17(9): 2328-2335. (in Chinese)
LIN Y M, LU N G, LOU X P, et al.. Matching cost filtering for dense stereo correspondence [J]. Mathematical Problems in Engineering, 2013,2013,654139-11.
ZHOU Z, LIU N, WU D, et al.. Stereo matching based on adaptive window and reliability constraint [J]. Journal of Computational Information Systems, 2013,9(16): 6669-6675.
陈玲,邓文怡,娄小平. 基于多频外差原理的相位解包裹方法[J]. 光学技术, 2012, 38(1): 73-78.
CHEN L, DENG W Y, LOU X P. Phase unwrapping method base on multi-frequency interferometry[J]. Optical Technique, 2012, 38(1): 73-78. (in Chinese)
FREEDMAN B, SHPUNT A, MACHLINE M, et al.. Depth mapping using projected patterns,US:8150142B2, 2012[P].
潘兵,俞立平,吴大方. 使用双远心镜头的高精度二维数字图像相关测量系统[J]. 光学学报, 2013, 33(4): 0412004.
PAN B, YU L P, WU D F. High-accuracy two-dimensional digital image correlation measurement system using a bilateral telecentric lens [J]. Acta Optica Sinica, 2013, 33(4): 0412004. (in Chinese)
潘兵, 吴大方, 夏勇. 数字图像相关方法中散斑图的质量评价研究[J]. 实验力学, 2010,25(2):120-129.
PAN B, WU D F, XIA Y. Study of speckle pattern quality assessment used in digital image correlation [J]. Journal of Experimental Mechanics, 2010,25(2):120-129. (in Chinese)
SUN Y, PANG J H L. Study of optimal subset size in digital image correlation of speckle pattern images[J]. Optics and Lasers in Engineering, 2007, 45(9): 967-974.
PAN B, XIE H M, WANG ZH Y, et al.. Study on subset size selection in digital image correlation for speckle patterns[J]. Optics Express, 2008, 16(10): 7037-7048.
VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]. Computer Vision and Pattern Recognition, 2001, 1: 511-518.
黄亚楠,娄小平. 基于多频外差原理的相位校正及匹配方法研究[J]. 应用光学, 2014, 35(2): 237-241.
HUANG Y N, LOU X P. Phase correction and matching based on multi-frequency heterodyne method [J]. Journal of Applied Optics, 2014, 35(2):237-241. (in Chinese)
0
浏览量
308
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构