浏览全部资源
扫码关注微信
1. 吉林工程技术师范学院 信息工程学院,吉林 长春,130052
2. 吉林大学 中日联谊医院 神经外科,吉林 长春,130033
3. 东北电力大学 信息工程学院,吉林 吉林,132012
[ "李勇(1970-),女,吉林四平人,博士,副教授,1992年于东北师范大学分别获得学士学位,2002年、2010年于吉林大学分别获得硕士、博士学位,主要从事图像处理方面的研究。E-mail:liyong8113@sina.com" ]
[ "苗壮(1968-),男,吉林长春人,博士,副教授,1992年、1997年、2007年于吉林大学分别获得学士、硕士、博士学位,主要研究方向为脑血管病手术及介入治疗。E-mail:miaozhuang99@163.com" ]
[ "王青竹(1983-),女,吉林长春人,博士,副教授,2006年、2008年、2011年于吉林大学分别获得学士、硕士、博士学位,主要从事机器学习、图像处理方面的研究。E-mail:wangqingzhu198339@163.com" ]
收稿日期:2014-08-19,
修回日期:2014-09-18,
纸质出版日期:2015-02-25
移动端阅览
李勇, 苗壮, 王青竹. 纹理引导的稀疏张量表示及在肺CT图像中的应用[J]. 光学精密工程, 2015,23(2): 550-556
LI Yong, MIAO Zhuang, WANG Qing-zhu. Texture-guided sparse tensor representation and its application in lung CT images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 550-556
李勇, 苗壮, 王青竹. 纹理引导的稀疏张量表示及在肺CT图像中的应用[J]. 光学精密工程, 2015,23(2): 550-556 DOI: 10.3788/OPE.20152302.0550.
LI Yong, MIAO Zhuang, WANG Qing-zhu. Texture-guided sparse tensor representation and its application in lung CT images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 550-556 DOI: 10.3788/OPE.20152302.0550.
基于张量理论在高维图像处理中的应用
提出一种张量模式的稀疏表示方法
以便有效地去除肺部CT序列图像的噪声
增强图像的有用信息。首先
设计了张量模式的正交匹配追踪法(TOMP)来表达稀疏系数;构建了高维K-奇异值分解法(HOK-SVD)用于字典更新。然后
对张量乘法的参数进行优化
即通过构造三维灰度共生矩阵
建立三维纹理特征与张量乘法模式之间的数学模型。最后
将这种方法应用于LIDC数据库的150组CT序列图像的预处理
对各算法的稀疏表示效果进行评价。与当前应用的其他方法相比
本文提出的高维K-SVD算法的的峰值信噪比提高了1.5%
平均误差降低了1.2%;在此预处理基础上进行的图像分割结果表明:图像的边缘偏移误差下降了3.0%
体积重叠率提高了1.2%。上述结果显示基于张量的方法可以更精确地完成对三维CT图像序列的稀疏表示。
On the basis of tensor-based theory applied to the high-dimensional image processing
a tensor-based sparse representation algorithm was proposed to preprocess lung CT images and to enhance the useful information for the images. Firstly
a Tensor-based Orthogonal Matching Pursuit (TOMP) was designed for sparse representation and a Higher-order K-Singular Value Decomposition (K-HOSVD) was constructed for updating the dictionary. Then
the main parameters of the tensor multiplication was optimized. It means that the 3D gray-level co-occurrence matrix was constructed and the relationship between tensor multiplication model and texture features was established. Finally
the proposed method was used in 150 sets of lung CT images from LIDC database and the sparse representation performance of the proposed scheme was evaluated. The results from proposed algorithm show that the Peak Signal to Noise Ratio (PSNR) is increased by 1.5% and the Mean Square Error (MSE) is decreased by 1.2% as compared with that of other common schemes. Furthermore
the edge bias error is decreased by 3.0% and the volume overlap is increased by 1.2% as compared with that of preprocessing segmentation result. The conclusion indicates that the proposed algorithm is more suitable for the sparse representation of three-dimensional images.
LEE S L A, KOUZANI A Z, HU E J. Automated detection of lung nodules in computed tomography images: a review [J]. Machine Vision and Applications, 2012, 23(1):151-163.
彭真明,景亮,何艳敏,等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学 精密工程, 2014, 22(1): 169-176.
PENG ZH M, JING L, HE Y M, et al.. Superresolution fusion of multi-focus images based on multiscale sparse dictionary[J]. Opt. Precision Eng., 2014, 22(1): 169-176. (in Chinese)
龚卫国,潘飞宇,李进明. 用双层重建法实现单幅图像的超分辨率重建[J]. 光学 精密工程,2014, 22(3):720-729.
GONG W G, PAN F Y, LI J M. Single-image super-resolution reconstruction via double layer reconstructing [J]. Opt. Precision Eng.,2014, 22(3):720-729.(in Chinese)
CHAVE R H, PONOMARYOV V. Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1777-1781.
HAO W L, LI J W, QU X B, et al.. Fast iterative contourlet thresholding for compressed sensing MRI [J]. Electronics Letters, 2013, 49(19): 1206-1208.
GUO Y, WANG Y Y, NIE S Q, et al.. Automatic segmentation of a fetal echocardiogram using modified active appearance models and sparse representation [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4):1121-1133.
VASILESCU M A O, TERZOPOULOS D. Multilinear subspace analysis of image ensembles [C]. 2003 IEEE Computer Society Conference on Computer Vision and Pattem Recognition,2003,2:93-99.
LU H P, KONSTANTINOS N P, VENETSANOPOULOS A N. MPCA: Multilinear principal component analysis of tensor objects [J]. IEEE Transactions on Neural Networks,2008, 19(1): 18-39.
NIE F P, XIANG SH M, SONG Y Q, et al.. Extracting the optimal dimensionality for local tensor discriminant analysis [J]. Pattern Recognition, 2009, 42(1):105-114.
TAO D CH, LI X L, WU X D, et al.. Supervised tensor learning [J]. Knowledge and Information Systems, 2007, 13(1):1-42.
TAO D CH, LI X L, WU X D, et al.. Tensor rank one discriminant analysis-a convergent method for discrimintive multilinear subspace selection [J]. Neurocomputing, 2008, 71(10-12):1866-1882.
HOU CH P, NIE F P, ZHANG CH SH, et al.. Multiple rank multi-linear SVM for matrix data classification [J]. Pattern Recognition,2014, 47(1):454-469.
LATHAUWER L D,MOOR B D,VANDEWALLE J, et al.. A multilinear singular value decomposition [J]. Siam Journal on Matrix Analysis and Application,2000,21(4):1253-1278.
VANNIEUWENHOVEN N,VANDEBRI L R,MEERBERGEN K, et al.. A New Truncation Strategy for the Higher-order Singular Value Decomposition [J]. Siam Journal on Scientific Computing, 2012, 34(2):1027-1052.
郑欣,彭真明. 基于活跃度的脉冲耦合神经网络图像分割 [J]. 光学 精密工程,2013,21(3):821-827.
ZHENG X, PENG ZH M. Image segmentation based on activity degree with pulse coupled neural networks [J]. Opt. Precision Eng., 2013,21(3):821-827. (in Chinese)
桑庆兵,李朝锋,吴小俊. 基于灰度共生矩阵的无参考模糊图像质量评价方法 [J]. 模式识别与人工智能,2013,26(5):492-497.
SANG Q B, LI CH F, WU X J. No-reference blurred image quality assessment based on gray level co-occurrence matrix [J]. Pattern Recognition and Artificial Intelligence, 2013, 26(5): 492-497.(in Chinese)
CHEN X C, UDUPA J K, BAGCI U, et al.. Medical image segmentation by combing graph cuts and oriented active appearance models [J]. IEEE Transactions on Imaging Processing,2012, 21(4): 2035-2046.
IBRAGIMOV B, LIKAR B, PERNUS F, et al.. A game-theoretic framework for landmark-based image segmentation[J]. IEEE Transactions on Medical Imaging,2012, 31(9):1761-1776.
0
浏览量
292
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构