浏览全部资源
扫码关注微信
国防科技大学 航天科学与工程学院,湖南 长沙,410073
收稿日期:2014-09-28,
修回日期:2014-11-11,
纸质出版日期:2015-02-25
移动端阅览
尹航, 宋新, 闫野. 星图的稀疏表示性能[J]. 光学精密工程, 2015,23(2): 573-581
YIN Hang, SONG Xin, YAN Ye. Performance on sparse representation of star images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 573-581
尹航, 宋新, 闫野. 星图的稀疏表示性能[J]. 光学精密工程, 2015,23(2): 573-581 DOI: 10.3788/OPE.20152302.0573.
YIN Hang, SONG Xin, YAN Ye. Performance on sparse representation of star images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 573-581 DOI: 10.3788/OPE.20152302.0573.
分析了星图在不同表示方法下的稀疏性能
以便将更好的稀疏表示应用于星敏感器压缩成像过程中。采用两种方式对星图的稀疏性进行了分析:第一种方法利用离散余弦变换(DCT)、离散傅里叶变换(DFT)和离散小波变换(DWT)构造完备正交基
考察星图在不同完备基下的稀疏性;第二种方法则是通过选择DCT完备基构造超完备字典及训练学习字典来分析星图在不同表示方法下的稀疏性。仿真结果表明
在完备基表示下
星图相比一般场景图像的平均峰值信噪比(PSNR)值高出15~20 dB
超完备字典和学习字典稀疏表示能够在各稀疏度下进一步提升峰值信噪比(PSNR值)2~20 dB;对于星点的重构质量
各表示方法在10%以上稀疏度时基本能够保证星点重构成功率高于95%。得到的结果证明星图的稀疏性满足压缩成像的要求
其稀疏重构能够在很大程度上保持适用于姿态确定的星点质心位置
从而验证了压缩感知在星敏感器应用中的稀疏前提及可行性。
The sparsity of a star image was explored in different representation approaches to apply better sparse representation to the compressive imaging process of a star tracker. The sparsity of star image was analyzed in two ways. In the first way
the Discrete Cosine Transform (DCT)
Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) were used to construct complete representation bases and to examine the sparsity of star image in different complete representation bases. In the second way
the DCT complete basis was selected to create the overcomplete dictionary and learning dictionary to analyze the sparsity of the star image in different representation approaches. The simulation result shows that the average Peak Signal to Noise Ratio(PSNR) of the star image is 15-20 dB higher than that of the common scene image by complete based representation
while the overcomplete dictionary and learning dictionary based representations improve the PSNR by 2-20 dB with different sparsities. Regarding the quality of star point reconstruction
the rate of successful reconstruction is mostly higher than 95% when the sparsity is more than 10% in different representation approaches. The results verify that the star image has the preferable sparsity and meets the requirement of compressive imaging.The reconstruction of the star image maintains the position of star centroid position suitable for attitude determination to a large extent
which verifies the sparse precondition and feasibility for applying the compressive sensing in star trackers.
LIEBE C C. Accuracy performance of star trackers-a tutorial [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 587-599.
ROGERS G D, SCHWINGER M R, KAIDY J T, et al.. Autonomous star tracker performance [J]. Acta Astronautica, 2009, 65(1-2):61-74.
DONOHO D. Compressed Sensing [EB/OL]. Manuscript. Submitted. wwwstat.stanford.edu/donoho/Reports/2004.
CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
马坚伟, 徐杰, 鲍月全,等. 压缩感知及其应用:从稀疏约束到低秩约束优化[J]. 信号处理, 2012,28(5): 609-623.
MA J W, XU J, BAO Y Q, et al.. Compressive sensing and its application: from sparse to low-rank regularized optimization [J]. Signal Processing, 2012, 28(5): 609-623.(in Chinese)
刘吉英. 压缩感知理论在成像中的应用[D]. 长沙:国防科学技术大学, 2010.
LIU J Y. Theory of compressive sensing and its application in imaging [D]. Changsha: National University of Defense Technology, 2010.(in Chinese)
CHEN C H. Signal and Image Processing for Remote Sensing [M]. Florida:The Chemical Rubber Company Press,2012: 73-90.
VISHAL M P, RAMA C. Sparse representations and compressive sensing for imaging and vision [M]. New York:Springer,2013: 1-15.
孙晓燕,常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学 精密工程, 2013,21(12): 3191-3197.
SUN X Y, CHANG F L. Object tracking based on sparse representation of gradient feature [J]. Opt. Precision Eng., 2013, 21(12): 3191-3197.(in Chinese)
吴君钦,李艳丽,刘昊. "类整数DCT"变换基去相关性能分析[J]. 液晶与显示, 2013,28(2): 278-283.
WU J Q, LI Y L, LIU H. De-correlation characteristic analysis of variety integer DCT transform radix [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(2):278-283.(in Chinese)
XIAO L L, LIU K, HAN D P. CMOS low data rate imaging method based on compressed sensing [J]. Optics & Laser Technology, 2012, 44(5):1338-1345.
LI SH L, LIU K, ZHANG F, et al.. Innovative remote sensing imaging method based on compressed sensing [J]. Optics & Laser Technology, 2014, 63: 83-89.
孙永明,吴谨,刘劲. 基于CS测量矩阵优化的图像融合[J]. 液晶与显示, 2014,29(3): 461-465.
SUN Y M, WU J, LIU J. Image fusion based on CS measurement matrix optimization [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(3):461-465.(in Chinese)
王良君,石光明,李甫,等. 混合观测压缩感知图像多描述编码[J]. 光学 精密工程, 2013,21(3): 724-733.
WANG L J, SHI G M, LI F, et al.. Compressive sensing multiple description image coding with hybrid sampling [J]. Opt. Precision Eng., 2013, 21(3):724-733.(in Chinese)
刘洲洲,王福豹. 基于离散萤火虫压缩感知重构的无线传感网络多目标定位[J]. 光学 精密工程, 2014,22(7): 1904-1911.
LIU ZH ZH, WANG F B. Multiple target localization in WSNs via CS reconstruction based on discrete GSO algorithm [J]. Opt. Precision Eng., 2014, 22(7): 1904-1911.(in Chinese)
严奉霞, 王泽龙, 朱炬波,等. 压缩感知理论与光学压缩成像系统[J]. 国防科技大学学报, 2014, 36(2): 140-147.
YAN F X, WANG Z L, ZHU J B, et al.. Compressive Sensing theory and optical compressive imaging systems [J]. Journal of National University of Defense Technology, 2014, 36(2): 140-147.(in Chinese)
俞文凯,姚旭日,刘雪峰,等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程, 2012,20(10): 2283-2292.
YU W K, YAO X R, LIU X F, et al.. Compressed sensing for ultra-weak light counting imaging [J]. Opt. Precision Eng., 2012, 20(10): 2283-2292.(in Chinese)
肖龙龙. 面向高分辨率遥感光学成像的压缩感知理论及方法研究[D]. 长沙:国防科学技术大学, 2012.
XIAO L L. Research on theory and methods of Compressed Sensing for high resolution remote sensing optical imaging [D]. Changsha: National University of Defense Technology, 2012.(in Chinese)
孟鸿鹰, 刘贵忠, 王志华. 正交小波(包)变换算子矩阵[J]. 电子学报, 2001, 29(5): 675-677.
MENG H Y, LIU G ZH, WANG ZH H. Operator matrix of the orthogonal wavelet (packets) transforms [J]. Acta Electronica Sinica, 2001, 29(5):675-677.(in Chinese)
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. On Information Theory, 2007, 53(12): 4655-4666.
AHARON M, ELAD M, BRUNCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Trans. On Signal Processing, 2006, 54(11): 4311-4322.
SHORTIS M R, CLARKE T A, SHORT T. A comparison of some techniques for the subpixel location of discrete target images [J]. SPIE Videometrics III 1994, 2350: 239-250.
0
浏览量
626
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构