浏览全部资源
扫码关注微信
山东大学 控制科学与工程学院,山东 济南,250061
收稿日期:2014-09-25,
修回日期:2014-11-04,
纸质出版日期:2015-02-25
移动端阅览
刘成云, 常发亮,. 基于稀疏表示和Weber定律的运动图像盲复原[J]. 光学精密工程, 2015,23(2): 600-608
LIU Cheng-yun, CHANG Fa-liang,. Blind moving image restoration based on sparse representation and Weber's law[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 600-608
刘成云, 常发亮,. 基于稀疏表示和Weber定律的运动图像盲复原[J]. 光学精密工程, 2015,23(2): 600-608 DOI: 10.3788/OPE.20152302.0600.
LIU Cheng-yun, CHANG Fa-liang,. Blind moving image restoration based on sparse representation and Weber's law[J]. Editorial Office of Optics and Precision Engineering, 2015,23(2): 600-608 DOI: 10.3788/OPE.20152302.0600.
针对运动过程中视觉图像易产生运动模糊的问题
提出了一种基于稀疏表示和Weber定律相结合的图像盲复原方法。该方法利用冲击滤波器预测模糊图像的显著边缘梯度
并用多尺度策略由粗到细进行模糊核的估计。然后
对图像盲复原模型进行稀疏正则化约束
并结合反映人类视觉特性的Weber定律对合成模糊图像和真实模糊图像进行盲复原。实验结果表明
本文采用的盲复原算法的性能指标和图像的纹理都达到了较优的复原效果。与近年较好的Rob Fergus去模糊方法和Xu Li去模糊方法相比
对Lena模糊图去模糊后的结构相似度(SSIM)为0.762 4
峰值信噪比(PSNR)提高了1.82~2.99 dB;对Cameraman模糊图去模糊后的结构相似度(SSIM)为0.8589
PSNR提高了2.46~5.58 dB。另外
本文方法降低了复原图像的边界伪影
符合人的视觉感知特性。
For the motion blur problem of a visual image produced in moving processing
a blind image restoration method based on sparse representation and Weber's law is proposed. The method uses a shock filter to predict the sharp edges of blurred images
and a multi-scale strategy to estimate the blur kernel from a coarse estimation to a fine one. The sparse representation is treated as a priori knowledge for regularization constraint of blind image restoration model
and the Weber's law which reflects the human visual characteristics is combined to conduct blind restoration for the synthetic blurred image and the real blurred image. Experimental results show that the proposed method achieves better restoration results both for the performance indexes and the image textures. As compared with the Rob Fergus's method and Xu Li's method developed in recent years
it shows that the structural similarity (SSIM) is 0.762 4 and the Peak Signal to Noise Ratio (PSNR) is improved by 1.82 dB to 2.99 dB for the deblurred Lena image
and the SSIM is 0.858 9; and the PSNR has improved by 2.46 dB to 5.58 dB for the deblurred Cameraman image. Moreover
the proposed method reduces the boundary artifacts of the restored image
which is better consistent with human visual perception characteristics.
吴海滨,刘超,于晓洋,等.视频监控图像的运动模糊方向估计[J].液晶与显示,2014,29(4):580-585. WU H B, LIU CH, YU X Y, et al.. Motion blurred direction estimation for video monitor image [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4):580-585.(in Chinese)
CHAN T F, WONG C K. Total variation blind deconvolution [J]. IEEE Tran. Image Processing, 1998,7(3):370-375.
FERGUS R, SINGH B, HERTZMANN A, et al.. Removing camera shake from a single photograph [J]. ACM Trans. on Graphics, 2006, 25(3):787-794.
SHAN Q, JIA J Y, AGARWALA A. High-quality motion deblurring from a single image [J]. ACM Trans. on Graphics,2008, 27(3), 73:1-73:10.
KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-laplacian priors[C]. In Proceedings of Neural Information Processing Systems, 2009:1033-1041.
CHO S, LEE S Y. Fast motion deblurring[C].SIGGRAPH ASIA 2009: 1-8.
XU L, JIA J.Two-phase kernel estimation for robust motion debluring [C]. ECCV, 2010: 157-170.
周箩鱼,张葆,杨扬.自适应阈值的超变分正则化图像盲复原 [J].光学 精密工程,2012,20(12): 2759-2767.
ZHOU L Y, ZHANG B,YANG Y. Image blind deblurring based on super total variation regularization with self-adaptive threshold[J].Opt. Precision Eng., 2012, 20(12): 2759-2767. (in Chinese)
李伟红,董亚莉,唐述.多范数混合约束的正则化图像盲复[J].光学 精密工程,2013,21(5): 1357-1364.
LI W H, DONG Y L, T SH. Regularized blind image restoration based on multi-norm hybrid constraints[J].Opt. Precision Eng., 2013, 21(5):1357-1364. (in Chinese)
王国栋,徐洁,潘振宽,等.基于归一化超拉普拉斯先验项的运动模糊图像盲复原[J].光学 精密工程,2013, 21(5) 1340-1348.
WNAG G D, XU J, PAN ZH K, et al.. Blind image restoration based on normalized hyper laplacian prior term [J]. Opt.Precision Eng., 2013, 21(5):1340-1348.(in Chinese)
JIANHONG SH. Weber’s law and weberized TV restoration [J].Physica D,2003,175:241-251.
张航,罗大庸.一种改进的全变差盲图像复原方法[J].电子学报,2005,33(7):1288-1290.
ZHANG H, LUO D Y. A modified for total variation blind image restoration [J]. Acta Electronica Sinica, 2005, 33(7):1288-1290.(in Chinese)
OSHER S,RUDIN L I.Feature oriented image enhancement using shock filters [J]. SIAM Journal on Numerical Analysis, 1990, 27(4): 919-940.
[14] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745.
CHAO J, EVANS B L. Patch-based image deconvolution via joint modeling of sparse priors [C]. ICIP, Brussels: IEEE, 2011:681-684.
CANDES E J,TAO T.Near-optimal signal recovery from random projections universal encoding strategies [J]. IEEE Trans. on Information Theory, 2006, 52(16):5406-5425.
GOLDSTEIN T, OSHER S. The split bregman method for L1 regularized problems [J]. SIAM Journal on Imaging Sciences, 2009,2(2):323-343.
GEMAN D, YANG CH. Nonlinear image recovery with half-quadratic regularization [J]. IEEE Trans. on Image Processing, 1995, 4(7):932-946.
PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit recursive function approximation with applications to wavelet decomposition[C]. The Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers, Pacific Grove: IEEE, 1993:40-44.
TIBSHIRAN R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society, 1996, 58(1):267-288.
EFRON B,HASTIET, JOHNSTONE I, et al.. Least angle regression[J]. The Annals of Statistics, 2004, 32(2):407-499.
WANG ZH, SHEIKH H R, SIMONCELLI E P. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 12(4):600-612.
0
浏览量
411
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构