浏览全部资源
扫码关注微信
合肥工业大学 仪器科学与光电工程学院,安徽 合肥,230009
收稿日期:2014-08-11,
修回日期:2014-09-24,
纸质出版日期:2015-03-25
移动端阅览
王永红, 冯家亚, 王鑫等. 基于狭缝光阑的剪切散斑干涉动态测量[J]. 光学精密工程, 2015,23(3): 645-651
WANG Yong-hong, FENG Jia-ya, WANG Xin etc. Shearing speckle interferometry based on slit aperture for dynamic measurement[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 645-651
王永红, 冯家亚, 王鑫等. 基于狭缝光阑的剪切散斑干涉动态测量[J]. 光学精密工程, 2015,23(3): 645-651 DOI: 10.3788/OPE.20152303.0645.
WANG Yong-hong, FENG Jia-ya, WANG Xin etc. Shearing speckle interferometry based on slit aperture for dynamic measurement[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 645-651 DOI: 10.3788/OPE.20152303.0645.
为了精确、实时地测量物体表面的动态形变
提出了基于狭缝光阑的空间载波剪切散斑干涉系统。该系统通过倾斜迈克尔逊干涉仪的一个平面镜来产生剪切量和载波频率
实现空间频谱的移动;采用一个可调节的狭缝光阑控制散斑大小和空间频谱宽度。基于傅里叶变换与反变换在空间频率域上提取所需的频谱并计算相位图
最后通过一幅干涉条纹图得到相位分布信息。采用该系统对一个中心加载、四周固支的薄铝板进行了动态测量
分析了光学系统参数对测量结果的影响。结果表明
采用像素尺寸为4.65 μm×4.65 μm的高分辨率相机
焦距为8 mm的成像镜头
设置剪切量为25 mm
狭缝光阑
X
方向的尺寸为1 mm时
可得到高质量的剪切散斑相位图。该方法可以在25 frame/s 的采集速度下
以43.6°的视场角实现动态形变的测量
可测形变峰值为0.5~30 μm。
To measure the dynamic deformation of an object surface in real time accurately
this paper proposes a spatial carrier phase-shifting shearing speckle system based on a slit aperture. A Michelson interferometer was used to generate a shearing distance and a spatial frequency shift by tilting a small angle in one of the two mirrors. A slit aperture was used to control the speckle size and the spatial spectral width. The Fourier transform and inverse transform were applied to accurate calculation of the phase and to obtain the phase distribution by using only a single image. Finally
the shearing speckle system was used to measure the dynamic deformation of a circumferentially fixed thin aluminum plate with a point load at the center. The effects of optical system parameters on the measuring results were analyzed. The experimental results show that when the shearing distance is 25 mm and the slit aperture size in
X
direction is 1 mm
it is possible to obtain a better phase-map quality by using a higher spatial frequency CCD camera with a pixel size of 4.65 μm×4.65 μm and an image lens with a focus length of 8 mm. It demonstrates that the shearing speckle system obtains the information of deformation in real time under a capturing rate of 25 frame/s and an angle of view field 43.6°
and the measurable range of displacement peak value is from 0.5 μm to 30 μm.
STEINCHEN W, YANG L. Digital Shearography:Theory and Application of Digital Speckle Pattern Shearing Interferometer [M]. Washington DC:SPIE Press, 2003.
YANG L, CHEN F, STEINCHEN W, et al.. Digital shearography for nondestructive testing:potentials, limitations and applications [J]. Holography Speckle, 2004, 1(2):69-79.
王永红, 梁恒, 王硕, 等. 数字散斑相关方法及应用进展 [J]. 中国光学, 2013, 6(4):470-480. WANG Y H, LIANG H, WANG SH, et al.. Advance in digital speckle correlation method and its applications [J]. Chinese Optics, 2013, 6(4):470-480. (in Chinese)
朱猛, 李翔宇, 黄战华, 等. 双孔载频剪切散斑干涉法测量表面动态形变 [J]. 光学 精密工程, 2013, 21(7):1701-1706. ZHU M, LI X Y, HUANG ZH H, et al.. Measurement of dynamic deformation using speckle shearography with carrier frequency generated by double-aperture [J]. Opt. Precision Eng., 2013, 21(7):1701-1706. (in Chinese)
YANG L. Recent developments in digital shearography for nondestructive testing [J]. Mater. Eval., 2006, 64(7):704-709.
KRUPKA R, WALZ T H, ETTEMEYER A. Industrial applications of shearography for inspection of aircraft components [J]. SPIE, 2005, 5852:476-479.
CREATH K. Phase-shifting speckle interferometry [J]. Applied Optics, 1985, 24 (18):3053-3058.
杨连祥, 祝连庆, 谢辛, 等. 电子散斑干涉测量中相移技术的新发展 [J]. 北京信息科技大学学报, 2013, 28(2):1-8. YANG L X, ZHU L Q, XIE X, et al.. New development of phase-shift techniques in electronic speckle pattern interferometry [J]. Journal of Beijing Information Science and Technology University, 2013, 28(2):1-8. (in Chinese)
SERVIN M, CUEVAS F J. A novel technique for spatial phase-shifting interferometry [J]. Modern Optics, 1995, 42(9):1853-1862.
BHDURI B, KOTHIYAL M P, KRISHNA M N. Digital speckle pattern interferometry (DSPI) with increased sensitivity:use of spatial phase shifting [J]. Optics Communications, 2007, 272:9-14.
蔡怀宇, 李宏跃, 朱猛, 等. 用空间载频法测量玻璃平板的厚度均匀性 [J]. 光学 精密工程, 2013, 21(2):260-266. CAI H Y, LI H Y, ZHU M, et al.. Measurement of thickness uniformity for glass plate by spatial carrier [J]. Opt. Precision Eng., 2013, 21(2):260-266. (in Chinese)
朱猛, 李翔宇, 龙宁波, 等. 大视场双缝载频散斑干涉成像检测系统 [J]. 光学 精密工程, 2014, 22(1):13-17. ZHU M, LI X Y, LONG N B, et al.. Double-slite based carrier frequency speckle interferometer system with large viewing field [J]. Opt. Precision Eng., 2014, 22(1):13-17. (in Chinese)
PEDRINI G, ZOU Y L, TIZIANI H J. Quantitative evaluation of digital shearing interferogram using the spatial carrier method [J]. Pure Appl. Opt., 1996, 5(3):313-321.
ZHU M, ZHANG H, LI X Y, et al.. Single-aperture spatial phase-shifting technique for speckle shearography based on modified Michelson interferometer [J]. Optical Engineering, 2013, 52(9):1-7.
SIROHI R S, BURKE J, HELMERS H, et al.. Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry [J]. Appl. Opt. , 1997, 36(23):5787-5791.
BHADURI B, MOHAN N K, KOTHIYAL M P, et al.. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS) [J]. Opt. Express, 2006, 14(24):11598-11607.
BHADURI B, MOHAN N K, KOTHIYAL M P. Simultaneous measurement of out-of-plane displacement and slope using a multiaperture DSPI system and fast Fourier transform [J]. Appl. Opt., 2007, 46(23):5680-5686.
WU S, HE X, YANG L. Enlarging the angle of view in Michelson interferometer-based shearography by embedding a 4f system [J]. Appl. Opt. , 2011, 50(21):1699-1705.
王永红, 李骏睿, 孙建飞, 等. 散斑干涉相位条纹图的频域滤波处理 [J]. 中国光学, 2014, 7(3):389-495. WANG Y H, LI J R, SUN J F, et al.. Frequency domain filtering for phase fringe patterns of digital speckle pattern interferometry [J]. Chinese Optics, 2014, 7(3):389-495. (in Chinese)
0
浏览量
634
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构