浏览全部资源
扫码关注微信
哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨,150001
收稿日期:2014-06-29,
修回日期:2014-08-26,
纸质出版日期:2015-03-25
移动端阅览
郭文峰, 曲建俊, 曲华杰等. 箝位体刚度平衡对被动箝位压电驱动器性能的影响[J]. 光学精密工程, 2015,23(3): 738-744
GUO Wen-feng, QU Jian-jun, QU Hua-jie etc. Influences of balanced stiffness of clamping body on performance of inverse piezoelectric inchworm motor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 738-744
郭文峰, 曲建俊, 曲华杰等. 箝位体刚度平衡对被动箝位压电驱动器性能的影响[J]. 光学精密工程, 2015,23(3): 738-744 DOI: 10.3788/OPE.20152303.0738.
GUO Wen-feng, QU Jian-jun, QU Hua-jie etc. Influences of balanced stiffness of clamping body on performance of inverse piezoelectric inchworm motor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 738-744 DOI: 10.3788/OPE.20152303.0738.
基于前期研制的被动箝位直线压电驱动器
研究了带有三角放大结构的箝位体的刚度平衡对其有效输出位移和驱动器性能的影响。实验和有限元仿真分析显示:刚度不平衡时
箝位体结构产生的偏转位移会导致三角放大结构水平输出位移降低
箝位体对导轨放松程度较小
驱动器性能较低。文中提出用增加刚度平衡板的方法使箝位压电叠堆两侧等效拉伸刚度相等
并利用有限元仿真确定了刚度平衡板尺寸。实施上述方法后的实验结果表明:增加刚度平衡板后
箝位体水平运动位移增加
从而提高了箝位体动态响应频率和箝位体对导轨的释放程度
显著提高了驱动器性能。刚度平衡后
驱动器动态响应频率为450 Hz
最大驱动力为7 N
最大空载运行速度为1.49 mm/s。
Based on an inverse piezoelectric inchworm motor researched and manufactured before
the influence of balanced stiffness of a clamping body with triangulation amplification on its output displacement and the performance of motor was researched. The research results show that rotary displacement is resulted by non-balanced stiffness of the clamping body and the horizontal displacement is reduced also. Then because the rotary displacement and the performance of the inchworm motor are lower
the extent of releasing guide is reduced. For overcomming this problems
a method to balance the equivalent extent stiffness in two sides of a piezoelectric stack was proposed by adding a piece of metal board
and the dimension of the board was calculated by Finite Element Method (FEM). After adding a metal board
it demonstrates that the horizontal displacement and response frequency of the clamping body are increased and the guide is approximate to be fully released. The performance of the inchworm motor is advanced dramatically. After balancing the stiffness
the response frequency is 450 Hz
the highest driving force is 7 N and the highest velocity is 1.49 mm/s.
马立, 周莎莎, 王坤. 行走式尺蠖压电直线驱动器研究现状及关键技术综述 [J]. 微电机, 2012, 45 (7):82-85. MA L, ZHOU SH SH, WANG K. State-of-the-art and key technologies in piezoelectric linear actuator of walker inchworm [J]. Micromotors, 2012, 45(7):82-85. (in Chinese)
张兆成, 胡泓. 蠕动式压电直线驱动器的发展及应用 [J]. 微特电机, 2009, 3:56-59. ZHANG ZH CH, HU H. Development and application of inchworm-type piezoelectric linear actuator [J]. Small & Special Electrical Machines, 2009, 3:56-59. (in Chinese)
刘建芳. 压电步进精密驱动器理论及实验研究 [D]. 长春:吉林大学机械学院, 2005. LIU J F. Theoretical and Experimental Study on Piezoelectric Precision Step Actuator [D]. Changchun:College of Mechanical Science & Engineering, Jilin University, 2005. (in Chinese)
LI J, ZHU ZH Q. Design of a linear piezomotor with ultra-high stiffness and nanoprecision [J]. IEEE/ASME Transactions on Mechatronics, 2000, 4(5):441-443.
BI ZH, ZHEN Q ZH. Developing a linear piezomotor with nanometer resolution and high stiffness [J]. IEEE/ASME Transactions on Mechatronics, 1997, 2(1):22-29.
JEREMY F, GARY H K, WEICHING CH, et al.. Design and performance of a high force piezoelectric inchworm motor [J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3668(Ⅱ):717-723.
张鹏. 内箝位步进式压电驱动机构研究 [D]. 长春:吉林大学机械学院, 2005. ZHANG P. Research on Theory and Experiment of Method of Stepping Driving by Piezoelectric Strangulated inside [D]. Changchun:College of Mechanical Science & Engineering, Jilin University, 2005. (in Chinese)
潘雷. 多足箝位式压电直线电机的研究 [D]. 南京:南京航空航天大学机械设计及理论学科硕士论文, 2012. PAN L. Study on Multi-foot Clamping Piezoelectric Linear Motor [D]. Nanjing:College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
TIMOTHY P G, JEREMY E F, JULIEN B, et al.. Design, modeling, and performance of a high force piezoelectric inchworm motor [J]. Journal of Intelligent Material Systems and Structures, 1998:756-767.
CHANWOO M, SUNGHO L, CHUNG J K. A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback [J]. Mechatronics, 2006, 16(2):105-110.
JAEHWAN K, JIN H L. Self-moving cell linear motor using piezoelectric stack actuators [J]. Smart Materials and Structures, 2005, 14:934-940.
JIAN L, RAMIN S, JAVAD D, et al.. Design and development of a new piezoelectric linear Inchworm actuator [J]. Mechatronics, 2005:651-680.
SULEMAN A, BURNS S, WAECHTER D. Design and modeling of an electrostrictive inchworm actuator [J]. Mechatronics, 2004, 14(5):567-586.
ZHANG SH, HUANG W Q, WANG Y. Research on the S-Type Linear Piezoelectric Motor [C]. Piezoelectricity, Acoustic Waves and Device Applications, 2012:167-170.
黄辉. 圆柱形被动箝位式压电蠕动直线电机研究 [D]. 哈尔滨:哈尔滨工业大学, 2013. HUANG H. Research of the Passive Clamp Type Cylindrical Inchworm-Type Piezo Electric Linear Motor [D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
曲建俊, 郭文峰, 王佳男. 被动箝位式压电驱动器:中国, CN 102664554 A [P]. 2012-09-12. QU J J, GUO W F, WANG J N. Inverse inchworm motor:China, CN 102664554 A [P]. 2012-09-12. (in Chinese)
0
浏览量
412
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构