浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2014-07-08,
修回日期:2014-08-20,
纸质出版日期:2015-03-25
移动端阅览
刘祥意, 张景旭, 吴小霞等. 环境对大口径SiC轻量化主镜视宁度的影响[J]. 光学精密工程, 2015,23(3): 776-783
LIU Xiang-yi, ZHANG Jing-xu, WU Xiao-xia etc. Affect of environment on mirror seeing of large-aperture SiC lightweight primary mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 776-783
刘祥意, 张景旭, 吴小霞等. 环境对大口径SiC轻量化主镜视宁度的影响[J]. 光学精密工程, 2015,23(3): 776-783 DOI: 10.3788/OPE.20152303.0776.
LIU Xiang-yi, ZHANG Jing-xu, WU Xiao-xia etc. Affect of environment on mirror seeing of large-aperture SiC lightweight primary mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 776-783 DOI: 10.3788/OPE.20152303.0776.
由于地基大口径望远镜主镜视宁度与望远镜系统成像质量相关
本文研究了环境对主镜视宁度的影响。理论分析了影响主镜视宁度大小的因素
得出主镜视宁度会随主镜表面和环境之间温差的增大而增大的结论。利用有限元法分析了自然对流和吹风条件下主镜的温度变化和温度分布;最后通过相应工况条件下2 m SiC轻量化主镜的温度测试实验对仿真分析结果进行了验证。实验结果显示:在初始温差为6℃的无风自然对流情况下
主镜与环境达到温度平衡约需4 h;而在初始温差为8℃的吹风情况下
主镜与环境达到热平衡仅需1.5 h。分析和实验结果表明:采用强迫对流热控措施可快速而有效地将主镜视宁度控制在合理的范围内
可获得更多的望远镜观测时间
同时保证大口径望远镜系统的成像质量。
As the primary mirror seeing of a ground based large aperture telescope is directly related to its image quality
this paper researches the effect of environments on the primary mirror seeing. Through theoretical analysis
it points out that the size of the primary mirror seeing will increase with the temperature change between the primary mirror surface and the environments. Then using thermal analysis software Radtherm
the temperature changes and temperature distributions of a 2 m SiC lightweight primary mirror were analyzed under two different conditions of natural convection and natural flowing. Finally
the some temperature experiments on the 2 m SiC lightweight primary mirror under the working conditions mentioned above were performed to verify simulation results. The experiment results indicate that it takes about 4 hours to reach temperature equilibrium with the environment for the primary mirror in case of natural convection with initial 6 ℃ temperature difference; however
it takes only about 1.5 hours in case of natural flowing with initial 8 ℃ temperature difference. It shows the greater temperature difference but much less consumed time. These means that when the thermal control system and control method are forced to the large-aperture telescope system to perform the convective heat control
the mirror seeing will be controlled in a reasonable range more quickly and more effectively
and more telescope observation time can be obtained meanwhile maintaining much better image quality.
张景旭. 地基大口径望远镜系统结构技术综述 [J]. 中国光学, 2012, 4(5):327-328. ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes [J]. Chinese Optics, 2012, 4(5):327-328.
胡君, 王栋, 孙天宇. 现代航天光学成像遥感器的应用和发展 [J]. 中国光学, 2010, 6(3):519-520. HU J, WANG D, SUN T Y. Application and development of recent space optical imaging remote sensors [J]. Chinese Optics, 2010, 6(3):519-520. (in Chinese)
程景全. 天文望远镜原理和设计 [M]. 北京:中国科学技术出版社, 2003. CHENG J Q. Principles of Astronomical Telescope Design [M]. Beijing:China Science & Technology Press, 2003. (in Chinese)
王红, 田铁印. 轴向温差对空间遥感器光学系统成像质量的影响 [J]. 光学 精密工程, 2007, 15(10):1489-1494. WANG H, TIAN T Y. Effect of axial temperature difference on imaging qualityof space remote sensor optical system [J]. Opt. Precision Eng. , 2007, 15(10):1489-1494. (in Chinese)
吴清文, 卢锷, 王家骐, 等. 主镜稳定温度场特性分析 [J]. 光学 精密工程, 1996, 4(6):47-53. WU Q W, LU E, WANG J Q, et al.. A study on static thermal properties of primary mirror [J]. Opt. Precision Eng. , 1996, 4(6):47-53. (in Chinese)
STEPP L, HANSEN E. The Gemini primary mirror thermal management [J]. SPIE, 1994, 2911:911-913.
RACINE R, SALMON D, COWLEY D, et al.. Mirror, dome and natural seeing at CFHT [J]. Publications of the Astronomical Society of the Pacific, 1991, 103:1020-1032.
WOOD P Y, RYAN S G. Effects on seeing at the Anglo-Australian telescope of temperature differences between outside air, dome air and mirror [J]. Proceedings of the Astronomical Society of Australia, 1995, 12:95-96.
LARRY W GOBLE. Temperature control of the 3. 5-Meter WIYN telescope primary mirror [J]. SPIE, 1991, 1532:161-163.
BRIAN CUERDENA. Jacques sebagb and etc. LSST mirror thermal performance [J]. SPIE, 2004, 5495:189-191.
DOUGLAS R. Neill. LSST primary/tertiary mirror thermal controlsystem [J]. SPIE, 2010, 7733:77331E-2.
VOLKER BUMER, PHILIPPE SACR. Operational model for VLT temperature and flow control [J]. SPIE, 1997, 2871:657-659.
吴小霞, 王鸣浩, 明名, 等. 大口径SiC轻量化主镜热变形的定标 [J]. 光学 精密工程, 2012, 20(6):1244. WU X X, WANG M H, MING M, et al.. Calibration of thermal distortion for large aperture SiC lightweight mirror [J]. Opt. Precision Eng. , 2012, 20(6):1244. (in Chinese)
董吉洪, 王克军, 李延春, 等. 空间遥感器中大口径SiC主镜的轻量化设计 [J]. 中国光学, 2011, 2(4):118-119. DONG J H, WANG K J, LI Y C, et al.. Lightweight design of large-aperture SiC primary mirrors for space remote sensors [J]. Chinese Optics, 2011, 2(4):118-119. (in Chinese)
杨献伟, 吴清文, 李书胜, 等. 空间光学遥感器热设计 [J]. 中国光学, 2011, 2(4):139-140. YANG X W, WU Q W, LI SH SH, et al.. Thermal design of space optical remote sensor [J]. Chinese Optics, 2011, 2(4):139-140. (in Chinese)
郭亮, 吴清文, 曹启鹏, 等. 空间相机电控机箱的热设计及仿真分析 [J]. 中国光学, 2011, 2(4):129-131. GUO L, WU Q W, CAO Q P, et al.. Thermal design and simulation analysis of eletronic controlling cabinet in space camera [J]. Chinese Optics, 2011, 2(4):129-131. (in Chinese)
LORENZO Z. An engineering handbook for local and dome seeing [J]. SPIE, 1997, 2871:726-736.
WYNGAARD J C. Behavior of the refractive-index-structure parameter near the ground [J]. Opt. Soc. Am., 1971, 61:1646-1650.
LORENZO Z. The Effects of the Localatmosphere Environment on Astronomical Observations [D]. Switzerland:Swiss Federal Institude of Technology, 1995.
贾力. 高等传热学 [M]. 北京:高等教育出版社, 2008. JIA L. Advanced Heat Transfer [M]. Beijing:Higher Eduction Press, 2008. (in Chinese)
0
浏览量
643
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构