浏览全部资源
扫码关注微信
1. 重庆大学 机械传动国家重点实验室 重庆,400044
2. 重庆理工大学 机械检测技术与装备教育部工程中心 重庆,400054
收稿日期:2014-07-14,
修回日期:2014-09-04,
纸质出版日期:2015-03-25
移动端阅览
付敏, 彭东林, 朱革等. 光强正交调制型位移传感器的数学模型与误差分析[J]. 光学精密工程, 2015,23(3): 784-793
FU Min, PENG Dong-lin, ZHU Ge etc. Mathematical model and error analysis of light intensity orthogonal modulation type displacement sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 784-793
付敏, 彭东林, 朱革等. 光强正交调制型位移传感器的数学模型与误差分析[J]. 光学精密工程, 2015,23(3): 784-793 DOI: 10.3788/OPE.20152303.0784.
FU Min, PENG Dong-lin, ZHU Ge etc. Mathematical model and error analysis of light intensity orthogonal modulation type displacement sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 784-793 DOI: 10.3788/OPE.20152303.0784.
针对传统光学位移测量方法对环境要求高和制造精度难以提高等问题
提出了一种以交变光场为测量媒介的新型线性位移检测方法。 基于提出的方法
设计了一种光强正交调制型位移传感器。该方法采用基于光强正交变化的两路电驻波合成电行波信号
通过对行波信号时间先后的测量实现空间位移的测量。为了深入理解传感器的传感机理
推导了传感器的测量模型
分析了与传感机理相关的关键因素对测量误差的影响。根据测量原理和测量模型的理论分析
研制出传感器原理样机
通过实验测试了各种关键因素对测量误差的影响
并进一步优化设计了传感器结构与参数。实验显示
优化后的传感器在108 mm测量范围内的测量精度达到±0.5 μm
是一种新的无需精细刻划的位移检测方案。
Traditional measurement methods for optical displacement have higher demands for the environment and it is difficult to improve the manufacturing precision of measuring devices. Therefore
a novel linear displacement measurement method was proposed by using the alternating light field as measuring medium. On the basis of the method
a light Intensity orthogonal modulation type displacement sensor was designed. The method combined two electrical standing waves with orthogonal changes into the electrical traveling wave signals
then
it measured the time sequence of traveling waves to achieve the spatial displacement measurement. In order to explore the sensing mechanism of the sensor
the actual measurement model of the sensor was derived
and the influence of key factors associated with the sensing mechanism on the measurement error was analyzed in detail. According to the analysis of the measuring principle and model theory
a sensor prototype was developed and various critical factors effecting on measurement error levels were tested. Then
sensor structures and parameters were optimized. The experimental results show that measuring errors of the optimized sensor are controlled within ± 0.5 μm in the measuring range of 108 mm
which demonstrates that proposed method is a new displacement detection solution without demands for precise photolithographic processing.
袁巨龙, 张飞虎, 戴一帆, 等. 超精密加工领域科学技术发展研究 [J]. 机械工程学报, 2010, 46(15):161-177. YUAN J L, ZHANG F H, DAI Y F, et al.. Development research of science and technologies in ultra-precision machining field [J]. Chinese Journal of Mechanical Engineering, 2010, 46(15):161-177. (in chinese)
裘祖荣, 石照耀, 李岩. 机械制造领域测量技术的发展研究 [J]. 机械工程学报, 2010, 46(14):1-11. QIU Z R, SHI ZH Y, LI Y. Research on the development of measurement technology in mechanical manufacture [J]. Chinese Journal of Mechanical Engineering, 2010, 46(14):1-11. (in chinese)
WOOD T, LE ROUZO J, FLORY F, et al.. Study of the influence of temperature on the optical response of interferometric detector systems [J]. Sensors and Actuators A:Physical, 2013, 203:37-46.
FLEMING A J. A review of nanometer resolution position sensors:operation and performance [J]. Sensors and Actuators A:Physical, 2013, 190:106-126.
KARRAI K, BRAUN P. Miniature long-range laser displacement sensor [J]. Proc. Actuator, Bremen, Germany, 2010:285-288.
WANG B, WANG X, LI Z, et al.. Sinusoidal phase-modulating laser diode interferometer insensitive to intensity modulation for real-time displacement measurement with feedback control system [J]. Optics Communications, 2012, 285(18):3827-3831.
DR. JOHANNES HEIDENHAIN GmbH. Exposed linear encoder [J]. Germany, 2012.
DR. JOHANNES HEIDENHAIN GmbH. Angle encoder with integral bearing [J]. Germany, 2010.
YUAN B, YAN H M, CAO X Q. A new subdivision method for grating-based displacement sensor using imaging array [J]. Optics and Lasers in Engineering, 2009, 47(1):90-95.
ZHENG C. Nanofabrication:principle, capabilities and limits [J]. Springer, Germany, 2008.
GROTJOHANN T, TESTA L, LEUTENEGGER M, et al.. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP [J]. Nature, 2011, 478:204-208.
JAMS BAXTER. Super-resolution imaging:beyond the limit [J]. Nature Photonics, 2012, 6:342.
MERINO S, RETOLAZA A, JUARROS A, et al.. A new way of manufacturing high resolution optical encoders by nanoimprint lithography [J]. Microelectronic Engineering, 2007, 84(5):848-852.
U C C, LIAO C H, CHEN Y Z, et al.. Common-path laser encoder with Littrow configuration [J]. Sensors and Actuators A:Physical, 2013, 193:69-78.
CARR J, DESMULLIEZ M Y P, WESTON N, et al.. Miniaturised optical encoder for ultra precision metrology systems [J]. Precision Engineering, 2009, 33(3):263-267.
国家自然科学基金委工程与材料科学学部. 机械工程学科发展战略报告(2011-2020) [M]. 北京:科学出版社, 2010. National Natural Science Foundation of Engineering and Materials Science Division. Mechanical Engineering Discipline Development Strategy Report (2011-2020) [M]. Beijing:Science Press, 2010. (in chinese)
彭东林, 刘小康, 张兴红, 等. 基于谐波修正法的高精度时栅位移传感器 [J]. 仪器仪表学报, 2006, 27(1):31-33. PENG D L, LIU X K, ZHANG X H, et al.. High-precision time-grating displacement sensor based on harmonic wave correcting method [J]. Chinese Journal of Scientific Instrument, 2006, 27(1):31-33. (in chinese)
0
浏览量
455
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构