浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 长春工业大学 电气与电子工程学院,吉林 长春,130012
4. 长春理工大学 理学院,吉林 长春,130022
收稿日期:2014-01-29,
修回日期:2014-03-05,
纸质出版日期:2015-03-25
移动端阅览
周渝人, 耿爱辉, 张强等. 基于压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2015,23(3): 855-863
ZHOU Yu-ren, GENG Ai-hui, ZHANG Qiang etc. Fusion of infrared and visible images based on compressive sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 855-863
周渝人, 耿爱辉, 张强等. 基于压缩感知的红外与可见光图像融合[J]. 光学精密工程, 2015,23(3): 855-863 DOI: 10.3788/OPE.20152303.0855.
ZHOU Yu-ren, GENG Ai-hui, ZHANG Qiang etc. Fusion of infrared and visible images based on compressive sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 855-863 DOI: 10.3788/OPE.20152303.0855.
基于压缩感知理论提出了一种红外与可见光图像的融合新方法。该方法将Contourlet变换(CT)和小波变换(WT)相结合
以进一步增加变换后系数的稀疏性
同时对采样模式和融合规则进行改进。首先对图像进行Contourlet变换
再对各高层分解系数进行正交小波变换;然后使用各层采样率不同的分立双放射形采样矩阵对系数采样
并用不同的规则对各层采样值进行融合;最后使用非线性共轭梯度法重构融合图像。实验结果表明
在采样率为0.5时
本文方法融合图像的细节信息比小波方法和小波变换压缩感知(WTCS)方法更加丰富;在所有采样率上
本文方法的融合效果比WTCS法在互信息、空间频率和融合信息逼真度等客观融合质量评价指标上均提高约10%。
A novel method to fuse infrared and visible images was proposed based on compressive sensing theory. The method combined Contourlet Transform (CT) with Wavelet Transform (WT) to increase the sparsity of transformed coefficients and also to improve sample patterns and fusion rules. Firstly
the original images were decomposed in a Contourlet domain
and orthogonal wavelet transform was applied to the high level decomposed coefficients. Then
the composite double radially sampling mode with different sampling rates in each decomposition level was used to perform the linear measurements of coefficients and to fuse the measurement values using different rules in each level. Finally
the fused image was reconstructed by using nonlinear conjugate-gradient solution. The experimental results demonstrate that the detail information of fusion image by proposed method is more salient than that of discrete wavelet transform fusion image when sampling rate is 0.5. As compared with WTCS method
the mutual information
spatial frequency and the visual information fidelity of fused image from proposed method are increased by 10%.
LI X, QIN S Y. Efficient fusion for infrared and visible images based on compressive sensing principle [J]. IET Image Process, 2011, 5(2):141-147.
付梦印, 赵诚. 基于二代 Curvelet变换的红外与可见光图像融合 [J]. 红外与毫米波学报, 2009, 28(4):254-258. FU M Y, ZHAO CH. Fusion of infrared and visible images based on the second generation Curvelet transform [J]. J. Infrared Millim. Waves, 2009, 28(4):254-258. (in Chinese)
傅瑶, 孙雪晨, 薛旭成, 等. 基于非下采样轮廓波变换的全色图像与多光谱图像融合方法研究 [J]. 液晶与显示, 2013, 28(3):429-434. FU Y, SUN X CH, XUE X CH, et al.. Panchromatic and multispectral image fusion method based on nonsubsampled contourlet transform [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3):429-434. (in Chinese)
黄晓生, 戴秋芳, 曹义亲. 一种基于小波稀疏基的压缩感知图像融合算法 [J]. 计算机应用研究, 2012, 29(9):3581-3583. HUANG X SH, DAI Q F, CAO Y Q. Compressive sensing image fusion algorithm based on wavelet sparse basis [J]. Application Ressearch of Computers, 2012, 29(9):3581-3583. (in Chinese)
吴新杰, 黄国兴, 王静文. 压缩感知在电容层析成像流型辨识中的应用 [J]. 光学 精密工程, 2013, 21(4):1062-1068. WU X J, HUANG G X, WANG J W. Application of compressed sensing to flow pattern identification of ECT [J]. Opt. Precision Eng., 2013, 21(4):1062-1068. (in Chinese)
王良君, 石光明, 李甫, 等. 混合观测压缩感知图像多描述编码 [J]. 光学 精密工程, 2013, 21(3):724-733. WANG L J, SHI G M, LI F, et al.. Compressive sensing multiple description image coding with hybrid sampling [J]. Opt. Precision Eng., 2013, 21(3):724-733. (in Chinese)
DAI Q, SHA W. The physics of compressive sensing and the gradient-based recovery algorithms. 2009. http://arxiv. org/abs/0906. 1487.
CANDS E, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. Inform. Theory, 2006, 56(2):589-509.
DAVID L D. Compressed sensing [J]. IEEE Trans. Inform. Theory, 2006, 52(4):1289-1306.
张伟, 曾凡仔, 曾庆光. 基于压缩感知理论的图像融合方法 [J]. 计算机工程与应用, 2012, 48(12):194-197. ZHANG W, ZENG F Z, ZENG Q G. Method of image fusion based on compressed sensing [J]. Computer Engineering and Applications, 2012, 48(12):194-197. (in Chinese)
WAN T, CANAGARAJAH N, ACHIM A. Compressive image fusion [C]. in Proc. Int. Conf. on Image Processing, San Diego, California, U. S. A, 2008:1463-1469.
HAN J J, LOFFELD O, HARTMANN K, et al.. Multi image fusion based on compressive sensing [C]. 2010 Int. Conf. on Audio Language and Image Processing, 2010:1463-1469.
KANG B, ZHU W P. Fusion framework for multi-focus images based on compressed sensing [J]. IET Image Process, 2013, 7(4):290-299.
LI S T, YIN H T, FANG L Y. Remote sensing image fusion via sparse Representations over learned dictionaries [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4779-4789.
DO M N, VRTTERLI M. The contourlet transform:an efficient directional multiresolution image representation [J]. IEEE Trans. on Image Processing, 2005, 14(12):2091-2106.
LUSTING M, DONOHO D, PAULY J. Sparse MRI:The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.
HAN Y, CAI Y Z, CAO Y, et al.. A new image fusion performance metric based on visual information fidelity [J]. Information Fusion, 2013, 14(2):127-135.
0
浏览量
344
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构