浏览全部资源
扫码关注微信
大连理工大学 运载工程与力学学部 工业装备结构分析国家重点实验室,辽宁 大连,116023
收稿日期:2014-09-24,
修回日期:2014-11-25,
纸质出版日期:2015-04-25
移动端阅览
史鹏飞, 高仁璟, 刘书田. 基于同轴光子带隙晶体的应变传感器[J]. 光学精密工程, 2015,23(4): 956-964
SHI Peng-fei, GAO Ren-jing, LIU Shu-tian. Strain sensor based on coaxial photonic band gap crystal[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 956-964
史鹏飞, 高仁璟, 刘书田. 基于同轴光子带隙晶体的应变传感器[J]. 光学精密工程, 2015,23(4): 956-964 DOI: 10.3788/OPE.20152304.0956.
SHI Peng-fei, GAO Ren-jing, LIU Shu-tian. Strain sensor based on coaxial photonic band gap crystal[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 956-964 DOI: 10.3788/OPE.20152304.0956.
基于微波网络理论
提出了一种基于变绝缘层的同轴光子带隙晶体应变传感器的设计方法。给出了同轴光子带隙晶体传感器的结构形式
推导了传感器带隙极值频率与晶体电长度之间的关系。根据给定监测频点设计了传感器的几何尺寸及材料参数
计算了传感器的
S
参数
计算结果与仿真结果相吻合。分析了提高该传感器灵敏度和品质因数的方法
并搭建了实验测试平台。实验结果表明:当应变量由0 μ
ε
提高至10 000 μ
ε
时
极值频率由2.450 GHz移至2.432 GHz
频移量为18 MHz
灵敏度为1.8 kHz/μ
ε
。得到的实验结果与仿真结果相吻合
验证了本文所提出的基于变绝缘层的同轴光子带隙晶体应变传感器设计方法的可行性和有效性。该传感器可满足不同灵敏度需求下对应变的实时监测。
According to microwave network theory
a coaxial photonic band gap crystal strain sensor was proposed based on a variable insulating layer. The model of the coaxial photonic band-gap crystal sensor was provided
and the relationship between the peak frequency of band gap and the electric length of the crystal was deduced. The structural size and the material parameters of the coaxial photonic band gap crystal sensor under a certain demand were designed. The
S
parameters were calculated
and they are well coincided with that from a simulation. The method for improving the sensitivity and quality factor of the sensor was analyzed and an experimental platform was set up. The experimental result shows that when the strain changes from 0 μ
ε
to 10 000 μ
ε
the peak frequency of the band gap is changed from 2.450 GHz to 2.432 GHz
in which the frequency shift is 18 MHz
and the sensitivity is 1.8 kHz/μ
ε
. The simulation results coincide with the experimental one
and validate the feasibility of the designing method of the strain sensor.
MELTZ G, MOOREY W W, GLENN W H. Formation of Bragg gratings in optical fibers by a transverse holograghic method [J]. Opt. Lett., 1989, 14(15):823-825.
吴晶, 吴晗平, 黄俊斌, 等. 用于传播结构监测的大量程光纤布拉格光栅应变传感器[J]. 光学精密工程, 2014, 22(2):311-317. WU J, WU H P, HUANG J B, et al.. Large range FBG sensor for ship structure health monitoring[J]. Opt. Precision Eng., 2014, 22(2):311-317. (in Chinese)
王宏亮, 宋娟, 冯德全, 等. 应用于特殊环境的光纤光栅温度压力传感器[J]. 光学精密工程, 2011, 19(3):545-551. WANG H L, SONG J, FENG D Q, et al.. High temperature-pressure FBG sensor applied on special enviroments[J].Opt. Precision Eng., 2011, 19(3):545-551.(in Chinese)
吴俊, 陈伟民, 章鹏, 等. 粘接层弹性模量对光纤Bragg光栅传感器应变传递性能的影响[J]. 光学精密工程, 2011, 19(12):2941-2946. WU J, CHEN W M, ZHANG P, et al.. Influence of bond layer characteristics on strain sensing properties of FBG sensors[J]. Opt. Precision Eng., 2011, 19(12):2941-2946.(in Chinese)
WEI T, WU S, HUANG J, et al.. Coaxial cable Bragg grating[J]. Appl. Phys. Lett., 2011, 99:113517.
HUANG J, WEI T, LAN X, et al.. Coaxial cable Bragg grating sensors for large strain measurement with high accuracy[J]. SPIE, 2012, 8345: 83452Z.
HUANG J, WANG T, HUA L, et al.. A coaxial cable Fabry-Perot interferometer for sensing applications[J]. Sensors, 2013, 13:15252-15260.
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.
FU J X, LIAN J, LIU R J, et al.. Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides[J]. Appl. Phys. Lett., 2011, 98:211104.
BREEZE J, OXBORROW M, ALFORD N M. Better than Bragg: optimizing the quality factor of resonators with aperiodic dielectric reflectors[J]. Appl. Phys. Lett., 2011, 99:113515.
HACHE A, POIRIER L. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment[J]. Phys. Rev. E, 2002, 65:036608.
SANCHEZ-LOPEZ M M, DAVIS J A, CRABTREE K. Coaxial cable analogs of multilayer dielectric optical coatings[J]. Am. J. Phys., 2003, 71:1314-1319.
MUNDAY J N, ROBERTSON W M. Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal[J]. Appl. Phys. Lett., 2003, 83(5):1053-1055.
POZAR D M. Microwave Engineering [M]. 4th ed. New York:John Wiley & Sons. Inc., 2012.
WALKER L R, WAX N. Non-uniform transmission lines and reflection coefficients[J]. J. Appl. Phys., 1946, 17:1043-1045.
0
浏览量
659
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构