浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-12-23,
修回日期:2014-01-21,
纸质出版日期:2015-04-25
移动端阅览
张浩, 方伟, 叶新等. 中/长波红外双衍射级次共路Offner成像光谱仪[J]. 光学精密工程, 2015,23(4): 965-974
ZHANG Hao, FANG Wei, YE Xin etc. Dual-order overlapped Offner imaging spectrometer in middle- and long- wave infrared regions[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 965-974
张浩, 方伟, 叶新等. 中/长波红外双衍射级次共路Offner成像光谱仪[J]. 光学精密工程, 2015,23(4): 965-974 DOI: 10.3788/OPE.20152304.0965.
ZHANG Hao, FANG Wei, YE Xin etc. Dual-order overlapped Offner imaging spectrometer in middle- and long- wave infrared regions[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 965-974 DOI: 10.3788/OPE.20152304.0965.
为提高成像光谱仪的工作波长范围
提出了基于双波段焦平面探测器(FPAs)的双衍射级次全共路Offner成像光谱仪结构。该结构中凸面光栅的一级衍射光和二级衍射光完全重叠共路传输
并可由焦平面处的双波段红外焦平面探测器IR FPAs实现级次的自然分离和同时探测。分析了该结构的工作原理和设计方法
基于几何光线追迹法仿真了谱线弯曲和色畸变特性
基于Huygens点扩散函数(PSF)仿真了光谱响应函数(SRF)并导出了光谱带宽。实验显示:双衍射级次共路Offner成像光谱仪的工作波段为3~6 μm(二级衍射)和6~12 μm(一级衍射)
谱线弯曲和色畸变均小于0.5个像元宽度
光谱带宽分别为13.2~14.3 nm(二级衍射)和28.3~33.3 nm(一级衍射)
两个工作波段内的衍射效率均大于或等于20%。整个系统结构简单紧凑、光谱范围宽
满足对地物或深空目标的中等分辨率的中远红外光谱探测需求。
An Offner imaging spectrometer based on Infrared Focal Plane Arrays(IR FPAs) operated in two common-path diffraction orders was proposed to extend the spectrometer wavelength coverage. The overlapped rays from the first order and the second order of convex grating could be naturally separated and simultaneously detected by the dual-band IR FPAs on the focal plane. The basic principles and design cautions were discussed in detail. Through geometrical ray tracing
the spectral smile and keystone were evaluated. Based on Huygens Point Spread Function(PSF)
the Spectral Response Function (SRF) was also simulated
from which the spectral bandpass was derived as well. The dual-band Offner imaging spectrometer covers the wavelength range of 3 to 6 μm in the second order and 6 to 12 μm in the first order with bandpasses of 13.2-14.3 nm and 28.3-33.3 nm respectively. The two diffraction orders have the same spectral smile and keystone characteristics by both within half of a pixel width. The grating efficiencies are not lower than 20% over the full wavelength ranges. For its compact construction and wide spectral coverage
the instrument is competent for the measurements of the earth surface or deep space objects in the middle- and long- wave infrared (MWIR/LWIR) regions with moderate resolutions.
MERRILL K, STEIN W. 2-14 μm stellar spectrophotometry I. stars of the conventional spectral sequence[J]. Publications of the Astronomical Society of the Pacific, 1976, 88:285-293.
SMITH J, DRAINE B, DALE D, et al.. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission[J]. The Astrophysical Journal, 2007, 656(2): 770.
HANNER M S, HACKWELL J A, RUSSELL R W, et al.. Silicate emission feature in the spectrum of comet Mueller 1993a[J]. Icarus, 1994, 112(2): 490-495.
HACKWELL J A, WARREN D W, BONGIOVI R P, et al.. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing[J]. SPIE, 1996, 2819: 102-107.
KESSLER M, STEINZ J, ANDEREGG M, et al.. The Infrared Space Observatory (ISO) mission[J]. Astronomy and Astrophysics, 1996, 315: L27-L31.
DE GRAAUW T, HASER L, BEINTEMA D, et al.. Observing with the ISO short-wavelength spectrometer[J]. Astronomy and Astrophysics, 1996, 315: L49-L54.
BEINTEMA D A, DE GRAAUW M W, LUINGE W, et al.. Design and measured performance of the ISO short wavelength spectrometer[J]. SPIE 1993, 1946: 293-301.
HOUCK J, ROELLIG T, VAN CLEVE J, et al.. IRS: the spectrograph on SIRTF; its fabrication and testing[J]. SPIE, 2000, 4131: 370-377.
HOUCK J R, ROELLIG T L, VAN CLEVE J, et al.. The infrared spectrograph (IRS) on the spitzer space telescope[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 18-24.
HOUCK J, VAN CLEVE J, BRANDL B, et al.. IRS: the infrared spectrograph on SIRTF[C]. Proceedings of the Conference "ISO beyond the Peaks", Villafranca del Castillo, Spain: ESA, 2000:1-3.
HOUCK J R, VAN CLEVE J E. IRS: an infrared spectrograph for SIRTF[J]. SPIE, 1995, 2475:456-463.
FANSON J L, FAZIO G G, HOUCK J R, et al.. Space infrared telescope facility (SIRTF)[J]. SPIE, 1998, 3356: 478-491.
WERNER M, ROELLIG T, LOW F, et al.. Spitzer space telescope mission[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 1-22.
安岩, 孙强, 刘英, 等. 交叉型消像散Czerny-Turner结构光谱仪设计[J]. 中国光学, 2012, 5(5): 470-475. AN Y, SUN Q, LIU Y, et al.. Design of astigmatism-free crossed Czerny-Turner spectrometer[J]. Chinese Optics, 2012, 5(5): 470-475. (in Chinese)
张晶, 王淑荣, 黄煜, 等. 临边成像光谱仪的发展现状与进展[J]. 中国光学, 2013, 6(5): 692-700. ZHANG J, WANG SH R, HUANG Y, et al.. Status and development of limb imaging spectrometers[J]. Chinese Optics, 2013, 6(5): 692-700. (in Chinese)
MOUROULIS P, WILSON D W, MAKER P D, et al.. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31):7200-7208.
GREEN R, PIETERS C, MOUROULIS P, et al.. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation[J]. Journal of Geophysical Research: Planets (1991-2012), 2011, 116(E00G19):1-31.
MOUROULIS P, SELLAR R G, WILSON D W, et al.. Optical design of a compact imaging spectrometer for planetary mineralogy[J]. Optical Engineering, 2007, 46(6): 063001.
LEVAN P D. Multi-octave spectroscopy with multi-waveband infrared focal plane array:U S, 6, 104, 488. 2000.
LEVAN P D, JEPSON D M. 3.5-to 12-μm dual-band spectrometer[J]. Optical Engineering, 2004, 43(12): 3045-3054.
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9): 091101-091144.
BEECKEN B P, LEVAN P D, TODT B D. Demonstration of a dual-band IR imaging spectrometer[J]. SPIE, 2007, 6660: 666004.
LEVAN P D, BEECKEN B P, LINDH C. Dualband infrared imaging spectrometer: observations of the moon[J]. SPIE, 2008, 7055: 705507.
刘康. 微型光谱仪关键技术及其应用研究[D]. 杭州:浙江大学, 2013. LIU K. Research on the key technology of the miniature spectrometer and its application system [D]. Hangzhou:Zhejiang University, 2013. (in Chinese)
KING D, RADFORD W, PATTEN E, et al.. 3rd generation 1280×720 FPA development status at Raytheon vision systems[J]. SPIE, 2006, 6206: 62060W-62015.
CLEGG P, ADE P, ARMAND C, et al.. The ISO long-wavelength spectrometer[J]. Astronomy and Astrophysics, 1996, 315: L38-L42.
KWO D, LAWRENCE G, CHRISP M. Design of a grating spectrometer from a 1:1 Offner mirror system[J]. SPIE, 1987, 818: 275-281.
CHRISP M P. Convex diffraction grating imaging spectrometer:US, 5, 880, 834. 1999.
OFFNER A. Unit power imaging catoptric:US, 3, 748, 015.1973.
OFFNER A. New concepts in projection mask aligners[J]. Optical Engineering, 1975, 14(2): 130-132.
LOBB D R. Theory of concentric designs for grating spectrometers[J]. Appl. Opt., 1994, 33(13): 2648-2658.
PRIETO-BLANCO X, MONTERO-ORILLE C, COUCE B, et al.. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168.
佟亚军, 吴刚, 周全, 等. Offner成像光谱仪的设计方法[J]. 光学学报, 2010(4):1148-1152. TONG Y J, WU G, ZHOU Q, et al.. Design method of Offner-type imaging spectrometer[J]. Acta Optica Sinica, 2010(4):1148-1152. (in Chinese)
MOUROULIS P, GREEN R O, CHRIEN T G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information[J]. Appl. Opt., 2000, 39(13): 2210-2220.
MOUROULIS P, MCKERNS M M. Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration[J]. Optical Engineering, 2000, 39(3): 808-816.
郑玉权, 王慧, 王一凡. 星载高光谱成像仪光学系统的选择与设计[J]. 光学精密工程, 2009, 17(11): 2629-2637. ZHENG Y Q, WANG H, WANG Y F. Selection and design of optical systems for spaceborne hyperspectral imagers[J]. Opt. Precision Eng., 2009, 17(11): 2629-2637. (in Chinese)
侯静, 姜文汉. 偏差与斯特列耳比的极限曲线[J]. 光学学报, 2001, 21(9): 1065-1067. HOU J, JIANG W H. Ultimate curves of aberration and Strehl ratio[J]. Acta Optica Sinica, 2001, 21(9): 1065-1067. (in Chinese)
张浩, 方伟, 叶新, 等. 宽光谱棱镜型太阳光谱仪设计[J]. 光学学报, 2013(2):178-186. ZHANG H, FANG W, YE X, et al.. Design of prism spectrometer with wide spectral coverage for solar spectrum measurement[J]. Acta Optica Sinica, 2013(2):178-186. (in Chinese)
郑玉权. 超光谱成像仪的精细光谱定标[J]. 光学精密工程, 2010, 18(11): 2347-2354. ZHENG Y Q. Precise spectral calibration for hyperspectral imager[J]. Opt. Precision Eng., 2010, 18(11): 2347-2354. (in Chinese)
KUNZE H J. Introduction to Plasma Spectroscopy[M]. Heidelberg: Springer, 2009.
HARDER J, THUILLIER G, RICHARD E, et al.. The SORCE SIM solar spectrum: comparison with recent observations[J]. Solar Physics, 2010, 263(1): 3-24.
ZEMAX Development Corporation. ZEMAX Optical Design Program User's Guide[M]. Washington DC: ZEMAX Development Corporation, 2009.
刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学精密工程, 2012, 20(1): 52-57. LIU Y J, CUI J CH, BAYANHESHIG, et al.. Design and application of imaging spectrometer with covex grating[J]. Opt. Precision Eng., 2012, 20(1): 52-57. (in Chinese)
汪海滨. 凸面闪耀光栅的设计及其制作[D]. 苏州:苏州大学, 2010. WANG H B. The design and fabrication of convex blazed grating[D]. Suzhou:Soochow University, 2010. (in Chinese)
0
浏览量
201
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构