浏览全部资源
扫码关注微信
1. 吉林大学 机械科学与工程学院,吉林 长春,130022
2. 浙江师范大学 精密机械研究所,浙江 金华,321004
收稿日期:2014-06-16,
修回日期:2014-07-19,
纸质出版日期:2015-04-25
移动端阅览
曾平, 高莹莹, 董景石等. 三分频式压电骨传导助听装置的仿真与测试[J]. 光学精密工程, 2015,23(4): 1011-1018
ZENG Ping, GAO Ying-ying, DONG Jing-shi etc. Simulation and test of three-frequency piezoelectric bone conduction hearing device[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1011-1018
曾平, 高莹莹, 董景石等. 三分频式压电骨传导助听装置的仿真与测试[J]. 光学精密工程, 2015,23(4): 1011-1018 DOI: 10.3788/OPE.20152304.1011.
ZENG Ping, GAO Ying-ying, DONG Jing-shi etc. Simulation and test of three-frequency piezoelectric bone conduction hearing device[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1011-1018 DOI: 10.3788/OPE.20152304.1011.
设计了一种采用3个结构尺寸不同的压电振子进行电信号-音频信号转换的三分频式压电骨传导助听装置
该装置可以适应较宽的工作频率范围。对压电振子进行了模态仿真分析和谐响应仿真分析
得出了压电振子最佳振型和谐振频率
确定了各个压电振子的工作频率段。根据仿真结果设计制作了三分频压电骨传导助听装置试验样机
对样机的幅频特性和响度进行了试验测试。结果显示:助听装置中低频、中频和高频压电振子的最大振动幅值分别为86.08 m、34.24 m和1.545 m
且处于各自振动频率段内;低频、中频和高频压电振子在各自频段内响度最大
各频段的最大响度值依次为69.1 dB、98.3 dB和117.1 dB。由于3个压电振子同时工作时
各频段声音都能得到较好的响应
因此拓宽了声音的响应频域。
A three-frequency piezoelectric bone conduction hearing aid device was proposed. The device adopts three piezoelectric vibrators with different sizes to converse the electrical signals into audio signals
which could adapt to a wide frequency range. The modal analysis and harmonic response simulation analysis of the vibrators were conducted
the best modes and resonance frequencies of the vibrators were selected
and their operating frequency bands were determined. A prototype for three-frequency piezoelectric bone conduction hearing aid devices was designed and manufactured according to the simulation results
and its amplitude-frequency characteristics and loudness were tested. The experiments show that the maximum vibration amplitudes of the low-frequency
mid-frequency and high-frequency piezoelectric vibrators are 86.08 m
34.24 m and 1.545 m
respectively
and they appear in their respective frequency bands. At their own response frequency band
every piezoelectric vibrator's loudness is largest and the maximun values are 69.1 dB
98.3 dB and 117.1 dB
respectively. When three piezoelectric vibrators are working at their respective bands simultaneously
the sound in each frequency band could obtain very good response
which broadens the sound response frequency domain of the hearing device.
刘泊, 郭建英, 孙永全. 压电陶瓷微位移驱动器建模与控制[J]. 光学精密工程, 2013, 21(6):1503-1509. LIU B, GUO J Y, SUN Y Q. Modeling and control for PZT micro-displacement actuato [J]. Opt. Precision Eng., 2013, 21(6): 1503-1509. (in Chinese)
朱猛, 黄战华, 王小军, 等. 香味动态散斑法测量压电陶瓷位移特性曲线[J]. 光学精密工程, 2011, 19(4):844-849. ZHU M, HUANG ZH H, WANG X J, et al.. Measurement of piezoelectric displacement characteristic curves using dynamic speckle correlation [J]. Opt. Precision Eng., 2011, 19(4):844-849. (in Chinese)
HONG E P, PARK I Y, SEONG K W, et al.. Evaluation of an implantable piezoelectric floating mass transducer for sensorineural hearing loss [J]. Mechatronics, 2009, 19(6):965-971.
LIU H G, MING X F, RAO ZH SH. Design of floating mass type piezoelectric actuator for implantable middle ear hearing device [J]. Chinese Journal of Mechanicai Engineering, 2009, 22(2):221-226.
刘后广, 闵小峰, 塔娜, 等. 人工中耳惯性压电式悬浮振子驱动电压的研究[J]. 压电与声光, 2010, 32(2):233-235. LIU H G, MIN X F, TA N, et al.. Study on the driving voltage of floating mass type piezoelectric inertial actuator for implantable middle ear hearing devices [J]. Piezoelectrics & Acoustooptics, 2010, 32(2):233-235. (in Chinese)
WANG ZH G, MILLS R, LUO H Y, et al..Brown and alfred cuschieri. A micropower miniature piezoelectric actuator for implantable middle ear hearing device [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(2):452-458.
NOIMANEE S, WATTANASIRICHAIGOON S. Development of vibration interface to skin ear hearing devices using PB(TI0.48ZR0.52)O3.[J]. The 3rd International Symposium on Biomedical Engineering, 2008:387-390.
ADAMSON R B A, BANCE M, BROWN J A. A piezoelectric bone-conduction bending hearing actuator[J]. J. Acoust. Soc. Am., 2010, 128(4):2003-2008.
王新荣, 陈永波.有限元法及ANSYS基础应用[M]. 北京:科学出版社, 2008. WANG X R, CHEN Y B.Method of Finite Element and Based Applications of ANSYS [M]. Beijing: science Press, 2008. (in Chinese)
刘振华, 刘华巍, 曾祥君, 等. 压电复合元件耦合振动模态分析 [J]. 压电与声光, 2010, 32(4):588-590. LIU ZH H, LIU H W, ZENG X J, et al.. Piezoelectric modal coupling vibration analysis of composite components [J]. Piezoelectrics & Acoustooptics, 2010, 32(4): 588-590.
孙景阳. 压电式骨传导听觉装置振动器结构设计与试验研究[D]. 长春:吉林大学, 2010. SUN J Y. Structrual design and experimental study of piezoelectric bone conduction auditory device vibrator[D]. Changchun: Jilin University, 2010. (in Chinese)
孙静. ANSYS 有限元分析在压电泵研究中的应用[J]. 技术与教育, 2009, 23(1):8-11. SUN J. The applications of ANSYS finite element analysis in the piezoelectric pump[J]. Technique & Education, 2009, 23(1):8-11. (in Chinese)
吴生绪. 塑料成形工艺技术手册 [M]. 北京:机械工业出版社, 2008. WU SH X. Plastic Forming Technology Handbook [M]. Beijing: Machinery Industry Press, 2008.(in Chinese)
姜松, 施小燕, 曾昕鑫, 等. 基于压杆后屈曲的工程材料形变行为及弹性模量测定[J]. 江苏大学学报(自然科学版). 2014, (1): 107-114. JIANG S, SHI X Y, ZENG X X, et al.. Determination of engineering material deformation behavior of bucklingand elastic modulus based on the pressure rod [J]. Journal of Jiangsu University(Natural Science Edition), 2014, (1):107-114. (in Chinese)
刘树林, 许小勇, 翟宇毅, 等. 振动模态对压电发电机陶瓷片粘贴位置的影响[J]. 光学精密工程, 2011, 19(8):1801-1809. LIU SH L, XU X Y, ZH Y Y, et al.. Effect of vibration modes on positions of piezoelectric ceramic patches for cantilever generators [J]. Opt. Precision Eng., 2011, 19(8):1801-1809. (in Chinese)
0
浏览量
203
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构