浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 长春工业大学 机电工程学院,吉林 长春,130012
收稿日期:2014-02-20,
修回日期:2014-03-17,
纸质出版日期:2015-04-25
移动端阅览
辛宏伟, 刘巨, 刘磊等. 小型光学遥感器主镜室的光机结构[J]. 光学精密工程, 2015,23(4): 1027-1033
XIN Hong-wei, LIU Ju, LIU Lei etc. Support structure of primary mirror for small optical remote sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1027-1033
辛宏伟, 刘巨, 刘磊等. 小型光学遥感器主镜室的光机结构[J]. 光学精密工程, 2015,23(4): 1027-1033 DOI: 10.3788/OPE.20152304.1027.
XIN Hong-wei, LIU Ju, LIU Lei etc. Support structure of primary mirror for small optical remote sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1027-1033 DOI: 10.3788/OPE.20152304.1027.
设计了一种新的光机结构
以使超小型光学遥感器在宽温度范围及恶劣的动力学环境下能够良好成像。研究了该结构中的核心部件-主镜组件的支撑结构的设计原理和实现方法。通过对主镜室初始设计方案的力、热特性分析
说明了主镜传统支撑方式的局限性。然后
以挠性支撑原理为基础设计了一种新型的适用于小口径反射镜支撑的挠性反射镜支撑结构
对该支撑结构的温度适应性及组件的模态进行了有限元分析
说明了采用这种反射镜挠性支撑结构能够满足设计指标要求。最后
论证了小型光学遥感器主镜室的加工及具体实现方法。对装配后的主镜组件进行了热冲击试验和温度拉偏试验
结果表明:在-60 ℃~80 ℃进行热冲击试验后
主镜不会出现炸裂现象;而在-20 ℃~50 ℃温度下
反射镜面形精度RMS仍保持在 0.025λ(λ=632.8 nm)水平。得到的结果验证了主镜室的设计可以满足小型光学遥感器的应用环境要求。
An opto-mechanical structure for a microminiature optical remote sensor was designed to obtain favorable images under a wider temperature range and severe dynamic environments. The design principle and concrete realization method of the support structure of a primary mirror and the most critical core component in the whole opto-mechanical structure of the optical remote sensor was researched. The boundedness of traditional supporting way of a primary mirror was explored through analysis on the mechanical and thermal properties of primary mirror chamber in the initial designing scheme. Then
a new-style and flexure support structure suitable for a mini-style mirror was designed based on flexible support principle. The thermal adaptability and dynamics environment suitability of the support structure were analyzed by finite element method
which verifies that the flexible support structure could meet the design requirements. In the end
the processing and concrete implementing methods of the primary mirror chamber of the optical remote sensor were presented. The experiments of thermal shock test and partial test on the primary mirror were performed. The results show after thermal shock test
the primary mirror won't appear the crack phenomenon at -60 ℃ -80 ℃. Moreover
the surface figure accuracy RMS of the mirror remains a level of 0.025λ (λ=632.8 nm) in -20 ℃ to 50 ℃. These results demonstrate that the primary mirror design satisfies the application environment requirements of the optical remote sensor.
张学军, 李志来, 张忠玉. 基于SiC材料的空间相机非球面反射镜结构设计[J]. 红外与激光工程, 2007, 36(5):577-582. ZHANG X J, LI ZH L, ZHANG ZH Y. Space telescope aspherical mirror structure design based on SiC material [J]. Infrared and Laser Engineering, 2007, 36(5):577-582. (in Chinese)
闫勇, 贾继强, 金光. 新型轻质大口径空间反射镜支撑设计[J]. 光学精密工程, 2008, 16(8):1533-1539. YAN Y, JIA J Q, JIN G. Design of new type spaceborne lightweighted primary mirror support[J]. Opt. Precision Eng., 2008, 16(8):1533-1539. (in Chinese)
郭疆, 何欣. 大口径空间遥感相机主反射镜支撑设计[J]. 光学精密工程, 2008, 16(9):1642-1647. GUO J, HE X. Design of support for primary mirror of space remote sensing camera[J]. Opt. Precision Eng., 2008, 16(9): 1642-1647. (in Chinese)
谭进国, 何欣, 付亮亮. 小型反射镜中心支撑技术[J]. 红外与激光工程, 2010, 39(6):1070-1074. TAN J G, HE X, FU L L. Support technique in center of minitype reflector [J]. Infrared and Laser Engineering, 2010, 39(6): 1070-1074.(in Chinese)
樊延超, 柴方茂, 李志来, 等. 大口径光学遥感器主反射镜轻量化方案设计[J]. 光电工程, 2012, 39(8): 123-128. FAN Y CH, CHAI F M, LI ZH L, et al.. Lightweight design of primary mirror with large aperture for optical remote sensor[J]. Opto- Electronic Engineering, 2012, 39(8):123-128.(in Chinese)
PARK K S, LEE J H, YOUN S K. Lightweight mirror design method using topology optimization[J]. Optical Engineering, 2005, 44(5), 053002-6.
PARK K S, CHANG S Y, YOUN S K. Topology optimization of the primary mirror of a multi-spectral camera [J]. Structural and Multidisciplinary Optimization, 2003, 25:46-53.
刘书田, 胡瑞, 周平, 等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化设计方法[J]. 光学精密工程, 2013, 21(7):1803-1810. LIU SH T, HU R, ZHOU P, et al.. Topologic optimization for configuration of web-skin-type ground structure based large-aperture space mirror [J]. Opt. Precision Eng., 2013, 21(7):1803-1810. (in Chinese)
曹乃亮, 徐宏, 辛宏伟, 等. 基于NiTi合金丝的反射镜柔性支撑结构的应力补偿[J]. 光学精密工程, 2012, 20(10):2161-2169. CAO N L, XU H, XIN H W, et al.. Stress compensation of flexible supporting structures for mirror using NiTi shape memory alloy [J]. Opt. Precision Eng., 2012, 20(10):2161-2169. (in Chinese)
安其昌, 张景旭, 张丽敏. 小型反射镜柔性镜座柔度分析[J]. 激光与红外, 2013, 43(7):785-789. AN Q CH, ZHANG J X, ZHANG L M. Flexibility analysis of mirror flexible lens seat [J]. Laser & Infrared, 2013, 43(7):785-789. (in Chinese)
徐宏, 关英俊. 空间相机1m反射镜组件结构设计[J]. 光学精密工程, 2013, 21(6):1488-1495. XU H, GUAN Y J. Structural design of 1m diameter space mirror component of space camera [J]. Opt. Precision Eng., 2013, 21(6): 1488-1495. (in Chinese)
陈洪达, 陈永和, 史婷婷, 等. 空间反射镜的轻量化及支撑设计研究[J]. 红外与激光工程, 2014, 43(2):535-540. CHEN H D, CHEN Y H, SHI T T, et al.. Lightweight and mounting design for primary mirror in space camera [J].Infrared and Laser Engineering, 2014, 43(2):535-540.(in Chinese)
0
浏览量
633
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构