浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
收稿日期:2014-06-20,
修回日期:2014-07-27,
纸质出版日期:2015-04-25
移动端阅览
周织建, 聂伟荣, 席占稳等. 多层UV-LIGA电铸镍材料的抗冲击性能[J]. 光学精密工程, 2015,23(4): 1044-1052
ZHOU Zhi-jian, NIE Wei-rong, XI Zhan-wen etc. Anti-impact material properties of UV-LIGA multi-layered electroformed nickel[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1044-1052
周织建, 聂伟荣, 席占稳等. 多层UV-LIGA电铸镍材料的抗冲击性能[J]. 光学精密工程, 2015,23(4): 1044-1052 DOI: 10.3788/OPE.20152304.1044.
ZHOU Zhi-jian, NIE Wei-rong, XI Zhan-wen etc. Anti-impact material properties of UV-LIGA multi-layered electroformed nickel[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1044-1052 DOI: 10.3788/OPE.20152304.1044.
为研究采用UV-LIGA(Ultraviolet Lithography
Galvanoformung
Abformung)技术制作的多层电铸镍的机械可靠性
对其进行了抗冲击性能分析。利用冲击试验台及信号采集系统测试了UV-LIGA多层电铸镍的抗冲击性能。实验分析得到其累积失效概率-加速度峰值曲线近似拟合于韦布尔统计分布
韦布尔系数γ=7.6
参考加速度为21 300
g
。当加速度为12 000~18 000
g
时
可靠性相对较高;当加速度为12 000~18 000
g
时
累计失效概率增加较快;当加速度大于24 000
g
时
可靠性下降迅速。利用扫描电子显微镜(SEM)观察了试样
得到其主要的失效形式有分层、断裂、塑性变形以及黏连等。初步分析了失效原因
并提出了相应的优化设计方法
为UV-LIGA多层结构的设计提供实验依据。
To explore the mechanical reliability of multi-layered electroformed nickel prepared by UV-LIGA (Ultraviolet Lithography
Galvanoformung
Abformung) multi-layered manufacturing technology
the anti-impact material properties of the multi-layered electroformed nickel were analyzed. High-speed impact tests for the multi-layered electroformed nickel were completed by adopting an impact testing device and a signal acquisition system. The experimental results show that the cumulative failure probability - peak acceleration curve approximately fits the Weibull statistical distribution
the Weibull coefficient is 7.6 and the reference acceleration is 21 300
g
. When the acceleration is 12 000-18 000
g
it shows a higher reliability; when that is 12000-18 000
g
the cumulative failure probability increases greatly; however the reliability is declines rapidly at acceleration more than 24000
g
. A Scanning Electron Microscopy(SEM) was used to observe the samples and the results show that the delamination
fracture
plastic deformation and adhesion are the main failure modes. Finally
the failure causes were analyzed and corresponding optimization methods were proposed to improve the process of UV-LIGA multi-layered electroformed nickel
which verifies that the experiments provide bases for design of a multi layer structure of UV-LIGA.
张向军.微机电系统机械学[M]. 北京:清华大学出版社, 2012. ZHANG X J. MEMS mechanics[M]. Beijing: Tsinghua University Press, 2012.
KELLY J J, GOODS S H, TALIN A A, et al.. Electrodeposition of Ni from low-temperature sulfamate electrolytes I. Electrochemistry and film stress[J]. Journal of the Electrochemical Society, 2006, 153(5): 318-324.
HARTZELL A L, SILVA M G, SHEA H R. MEMS可靠性[M]. 恩云飞等译. 北京:电子工业出版社, 2012. HARTZELLl A L, SILVA M G, SHEA H. R.MEMS Reliability[M]. Beijing:Publishing House of Electronics Industry, 2012.
WAGNER U, MULLER-FIEDLER R, BAGDAHN J, et al.. Wagner U, Muller-Fiedler R, Bagdahn J, et al. Mechanical reliability of epipoly MEMS structures under shock load[C]. 12th International Conference on Transducer, Solid-State Sensors, Actuators and Microsystems, 2003, 1: 175-178.
TANNER D M, WALRAVEN J A, HELGESEN K, et al.. MEMS reliability in shock environments[C]. 38th Annual IEEE International Reliability Physics Symposium, 2000: 129-138.
LIU J K, QI X L, JIA J, et al.. Study on the Reliability Problem of MEMS Fuze Mechanism[J]. Advanced Materials Research, 2013, 628: 72-77.
RAFIEE K, FENG Q, COIT D W. Reliability modeling for dependent competing failure processes with changing degradation rate [J]. IIE Transactions, 2014, 46(5): 483-496.
SRIKAR V T, SENTURIA S D. The reliability of Microelectromechanical systems (MEMS) in shock environments[J]. Journal of Microelectromechan-ical Systems, 2002, 11(3): 206-214.
JIANG T, ZHOU J, FENG F. Study on designs of stoppers for MEMS devices in shock environment [J]. Applied Mechanics and Materials, 2012, 184: 510-515.
WU J H, STEYN J L. Reliability studies on MEMS shutters and displays[C]. International Society for Optics and Photonics SPIE MOEMS-MEMS, 2013: 1-7.
FANG X W, HUANG Q A, TANG J. Modeling of MEMS reliability in shock environments[C]. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004, 2: 860-863.
SUNDARAM S, TORMEN M, TIMOTIJEVIC B, et al.. Vibration and shock reliability of MEMS: modeling and experimental validation[J]. Journal of Micromechanics and Microenginee-ring, 2011, 21(4): 1-13.
STAUFFER J M, DUTOIT B, ARBAB B. Standard MEMS sensor technologies for harsh environment[C]. The Institution of Engineering and Technology Seminar on MEMS Sensors and Actuators, 2006: 91-96.
KIM J W, PARK H W, CHOI M K, et al.. Drop impact reliability of MEMS inertial sensors with membrane suspensions for mobile phones[C]. IEEE 62nd Electronic Components and Technology Conference (ECTC), 2012: 344-349.
LIU H, QIAN Y, WANG N, et al.. Study of the wideband behavior of an in-plane electromagnetic MEMS energy harvester[C]. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013: 829-832.
HARTZELL A, WOODILLA D. Reliability methodology for prediction of micromachined accelerometer stiction[C]. 37th Annual IEEE Reliability Physics Symposium Proceedings, 1999: 202-205.
YOON S W, YAZDI N, PERKINS N C, et al.. Novel integrated shock protection for MEMS[C]. The IEEE 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005, 1: 396-400.
BROWN T G. Harsh military environments and Microelectromechanical (MEMS) devices[C]. Proceedings of IEEE Sensors, 2003, 2: 753-760.
毛胜平, 汪红, 刘瑞, 等. UV-LIGA 镍薄膜材料的力学性能测试与分析[J]. 功能材料, 2010, 41(2): 354-357. MAO S, WANG H, LIU R, et al.. Measurement and analysis of mechanical properties of UV-LIGA Ni thin film [J]. Journal of Functional Materials, 2010, 41(2):354-357.
GREEK S, ERICSON F, JOHNANSSON S, et al.. Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures [J]. Journal of Micromechanics and Microenginee-ring, 1999, 9(3): 245.
李永辉. 金属微器件制作及微电铸铸层结合强度研究[D]. 大连:大连理工大学, 2012. LI Y H. Fabrication of metal micro devices and the study on bond strength of micro electrofor-ming layers [D]. Dalian:Dalian University of Technology, 2012
吝海锋, 吕苗, 杨拥军, 等. MEMS 电容式加速度计可靠性研究[J]. 中国机械工程, 2005, 16(z1): 124-126. LIN H F, lV M, YANG Y J, et al.. Reliability Considerations and Experiments of MEMS Capac-itive Accelerometers [J]. China Mechanical Engineering, 2005, 16:124-126.
HURST K M, ANSARI N, ROBERTS C B, et al.. Silica-Encapsulated Nano particle Films as Surface Modifications for MEMS [J]. Journal of Microelectromechanical Systems, 2011, 20(5): 1065-1067.
0
浏览量
607
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构