浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2014-02-19,
修回日期:2014-03-26,
纸质出版日期:2015-04-25
移动端阅览
李毅, 吴清文, 陈立恒等. 二氧化碳探测仪的热控系统[J]. 光学精密工程, 2015,23(4): 1053-1061
LI Yi, WU Qing-wen, CHEN Li-heng etc. Thermal control system of carbon dioxide detection instrument[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1053-1061
李毅, 吴清文, 陈立恒等. 二氧化碳探测仪的热控系统[J]. 光学精密工程, 2015,23(4): 1053-1061 DOI: 10.3788/OPE.20152304.1053.
LI Yi, WU Qing-wen, CHEN Li-heng etc. Thermal control system of carbon dioxide detection instrument[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1053-1061 DOI: 10.3788/OPE.20152304.1053.
根据二氧化碳探测仪所处的空间环境、结构特点和工作模式
采用被动热控和主动热控相结合的方法设计了它的热控系统。首先
介绍了探测仪结构及内热源
同时分析了探测仪的外热流
从而得到了热控任务难点。然后
对探测仪的各个部分进行了热设计
采用被动热控与主动热控相结合的方式进行了热隔离、热疏导和热补偿;根据探测仪所处的空间环境和采取的热控措施利用TMG软件进行了热分析。仿真分析结果表明
光学系统主体框架的温度为13.3~21.7 ℃
满足了设计要求。最后
通过真空条件下的热平衡试验对热设计进行了试验验证
试验结果显示光学系统主体框架的温度为13.0~20.3 ℃
试验值与计算值基本一致
满足热控指标要求。得到的数据表明提出的热设计方案合理可行。
According to the structure characteristics and working modes of a dioxide detection instrument and considering its space environments
a thermal control system for the detection instrument was designed by combination of passive thermal control and active thermal control. Firstly
the structure and the internal heat source were introduced
the heat flux of the instrument was analyzed
and the difficulties of thermal control were obtained. Then
the thermal design of the instrument was carried out and the combination method of passive thermal control and active thermal control was used for the thermal isolation
thermal transmission and the thermal compensation. According to the space environment and thermal control measures
a thermal analysis model was constructed and the thermal transfer was solved with a TMG code. The simulation results show that the temperature of the main frame in the optical system is 13.3 ℃-21.7 ℃
which meets the design requirements. Finally
the thermal design was verified with a vacuum thermal balance test and the test results indicate that the temperature of the main frame in the optical system is 13.0 ℃-20.3 ℃. The tested value is in agreement with the calculated ones
which meets the thermal design targets and verifies that the thermal design is reasonable.
闻斋. 世界首颗专用温室气体观测卫星升空[J]. 国际太空, 2009, 3:10-11. WEN ZH.World's first dedicated greenhouse gases observing satellite launch[J].Space International, 2009, 3:10-11.(in Chinese)
Earth Science Reference Handbook. OCO Orbiting Carbon Observatory[M/OL]. [2013-09-15]..http://atrain.nasa.gov/publications/oco.pdf.
曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学, 2013, 6(6):834-840. QU Y.Technical status and development tendency of atmosphere optical remote and monitoring[J].Chinese Optics, 2013, 6(6):834-840.(in Chinese)
王维, 董吉洪, 孟庆宇. 火星探测可见光遥感相机的发展现状与趋势[J]. 中国光学, 2014, 7(2):208-214. WANG W, DONG J H, MENG Q Y.Current status and developing tendency of visible spectral remote sensing camera for mars observation[J].Chinese Optics, 2014, 7(2):208-214.(in Chinese)
王丹, 魏强, 刘海, 等. 空间环境防护型薄膜评述[J]. 材料导报A 综述篇, 2011, 25(5):28-32. WANG D, WEI Q, LIU H, et al..Review on protective thin films for space environments in spacecraft applications [J]. Materials Review, 2011, 25(5):28-32.(in Chinese)
匡正, 苏艳梅, 杨德庄, 等. 两种确定热控涂层性能退化模型参数的组合优化算法[J]. 智能计算机与应用, 2011, 8:6-9. KUANG ZH, SU Y M, YANG D ZH, et al.. Two combinatorial optimizing algorithms to determine the parameters of degenerating models of thermal control coats on spacecrafts [J]. Intelligent Computer and Applications, 2011, 8:6-9.(in Chinese)
关奉伟, 刘巨. 空间光学遥感器大功率控制电箱的热设计[J]. 中国光学, 2013, 6(6):919-929. GUAN F W, LIU J.Thermal design of high electronic control cabinet of space optical remote sensor[J].Chinese Optics, 2013, 6(6):919-929.(in Chinese)
陈立恒, 徐抒岩. 高分辨率空间相机电控箱热设计[J]. 光学精密工程, 2011, 19(1):69-76. CHEN L H, XU SH Y.Thermal design of electric controller for high -resolution space camera[J].Opt. Precision Eng., 2011, 19(1):69-76.(in Chinese)
陈立恒, 吴清文, 罗志涛, 等. 空间相机电子设备热控系统设计[J]. 光学精密工程, 2009, 17(9):2145-2152. CHEN L H, WU Q W, LUO ZH T, et al.. Thermal control of high-power focal plane apparatus[J].Opt. Precision Eng., 2009, 17(9):2145-2152.(in Chinese)
郭亮, 吴清文, 曹启鹏, 等. 空间相机电控机箱的热设计及仿真分析[J]. 中国光学, 2011, 4(2):129-138. GUO L, WU Q W, CAO Q P, et al.. Thermal design and simulation analysis of electronic controlling cabinet in space camera[J].Chinese Optics, 2011, 4(2):129-138.(in Chinese)
王厚华. 传热学[M]. 重庆:重庆大学出版社, 2008. WANG H H.Heat Transfer[M]. Chongqing : Chongqing University Press, 2008. (in Chinese)
杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2010. YANG SH M, TAO W Q.Heat Transfer[M].Beijing :Higher Education Press, 2010.(in Chinese)
侯增祺, 胡金刚. 航天器热控制技术——原理及其应用[M]. 北京:中国科学技术出版社, 2007. HOU Z Q, HU J G.Spacecraft Thermal Control Technology-Principles and Applications[M].Beijing :China Science and Technology Press, 2007.(in Chinese)
李书胜, 吴清文, 杨献伟, 等.月基探测器热设计和计算机仿真[J]. 计算机工程与设计, 2011, 32(6):2083-2087. LI SH SH, WU Q W, YANG X W, et al..Thermal design and computer simulation for moon-landed explorer[J]. Computer Engineering and Design, 2011, 32(6):2083-2087.(in Chinese)
郭亮, 吴清文, 颜昌翔. 空间光谱成像仪热设计及其分析与验证[J]. 光学精密工程, 2011, 19(6):1272-1280. GUO L, WU Q W, YAN CH X.Thermal design of space spectral imaging apparatus and its analysis and verification [J].Opt. Precision Eng., 2011, 19(6): 1272- 1280. (in Chinese)
陈立恒, 吴清文, 刘伟奇, 等. 空间摄像机热控系统设计[J]. 光学精密工程, 2012, 20(3):556-562. CHEN L H, WU Q W, LIU W Q, et al..Thermal design for space cameras[J]. Opt. Precision Eng., 2012, 20(3): 556-562.(in Chinese)
范含林, 文耀普. 航天器热平衡试验技术综述[J]. 航天器环境工程.2007, 24(2):63-68. FAN H L, WEN Y P. Review on the thermal balance test for spacecraft [J]. Spacecraft Environment Engineering, 2007, 24(2): 63-68.(in Chinese)
0
浏览量
568
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构