浏览全部资源
扫码关注微信
厦门大学 机电工程系,福建 厦门,361005
收稿日期:2014-06-20,
修回日期:2014-08-05,
纸质出版日期:2015-04-25
移动端阅览
赵扬, 姜佳昕, 陈冬阳等. 气辅式多射流纳米颗粒高效静电雾化喷射[J]. 光学精密工程, 2015,23(4): 1062-1069
ZHAO Yang, JIANG Jia-xin, CHEN Dong-yang etc. High efficiency multi-jet electrospraying of nano particles with assisted gas[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1062-1069
赵扬, 姜佳昕, 陈冬阳等. 气辅式多射流纳米颗粒高效静电雾化喷射[J]. 光学精密工程, 2015,23(4): 1062-1069 DOI: 10.3788/OPE.20152304.1062.
ZHAO Yang, JIANG Jia-xin, CHEN Dong-yang etc. High efficiency multi-jet electrospraying of nano particles with assisted gas[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1062-1069 DOI: 10.3788/OPE.20152304.1062.
研究了一种带辅助气体的新型纳米颗粒多射流高效雾化喷射技术。开发了带有辅助气流的多喷嘴静电雾化喷头
引导辅助气体均匀分布于各喷嘴四周形成稳定鞘层气流
从而对带电雾化射流产生拉伸与约束作用
而形成的鞘层气流降低了表面电荷密度
克服了带电喷嘴间的电场干扰
实现了多雾化射流的稳定、持续喷射。研究了静电雾化多射流的喷射、沉积行为
分析了辅助气体供气压强对射流喷射临界启动电压和纳米颗粒均匀性的影响规律。实验结果显示:辅助鞘层气流降低了射流喷射临界启动电压和雾化颗粒直径
提升了雾化纳米颗粒的均匀性。辅助气体供气压强从0 kPa增加到50 kPa时
雾化多射流喷射临界启动电压从4.9 kV降低至2.8 kV
纳米颗粒平均直径从845.267 nm下降至528.06 nm。结果表明:鞘层气流的引入为纳米颗粒的多射流、快速喷射提供了一种有效的技术手段
有助于推动静电雾化技术的应用发展。
A novel multi-jet electrospray with assisted gas was explored to eject nano particles in a high efficiency. The electrospray spinneret with multi nozzles was designed to guide the assisted gas to form the uniform sheath gas around each nozzle and to provide the excess stretching and restriction forces on the charged electrospray jets. The obtained sheath gas decreases the surface charge density of charged electrospray jets and the interferences among charged jets and makes stable multi electrospray jets for continuously ejection for a long time. The ejection and deposition behaviors of multi electrospray jets were investigated and the effects of sheath gas on the threshold voltage of multi electrospray jet ejection and the uniformity of nano particles were analyzed. The experiments show that the sheath gas is beneficial to the decrease of threshold voltages of multi electrospray jets and the diameters of electrospray nano particles and to the increase of the uniformity of nano particles. When the supply pressure of assisted gas increases from 0 kPa to 50 kPa
the threshold voltage of multi electrospray jet ejection decreases from 4.9 kV to 2.8 kV and the average diameter of nano particles decreases from 845.267 nm to 528.06 nm. It concludes that introducing the assisted gas into electrospray spinneret provides a good way to rapidly fabricate the nano particles through multi-jet electrospray. This work would promote the application research of electrospray technology.
WONG S Y, CHEN Y C. Droplet-based elect-rospray ionization mass spectrometry for qualitative and quantitative analysis [J]. J. Mass. Spectrom, 2014, 49(5): 432-436.
张丽, 孙冰, 佐藤大, 等. 静电雾化法制备二氧化硅微粒的研究 [J]. 大连海事大学学报, 2012, 38(4): 88-90. ZHANG L, SUN B, SATO M, et al.. Silicon dioxide formation by electrostatic atomization [J]. J. of Dalian Maritime Univer., 2012, 38(4):88-90. (in Chinese)
BENNETT R V, CLEAVES H J, DAVIS J M, et al.. Desorption electrospray ionization imaging mass spectrometry as a tool for investigating model prebiotic reactions on mineral surfaces [J]. Anal. Chem. Analytical chem., 2013, 85(3): 1276-1279.
蔡浩原, 崔大付, 李亚亭, 等. 高阻值纳米薄膜材料的热电特性测量 [J]. 光学精密工程, 2014, 22(7): 1794-1799. CAI H Y, CUI D F, LI Y T, et al.. Measurement of thermoelectric characteristics of high resistance nano films [J]. Opt. Precision Eng., 2014, 22(7): 1794-1799. (in Chinese)
REDDY M, SUBBA R G, CHOWDARI B. Metal oxides and oxysalts as anode materials for Li ion batteries [J]. Chem. Rev., 2013, 113(7): 5364-5457.
JU J, YAMAGATA Y, HIGUCHI T. Thin-film fabrication method for organic light-emitting diodes using electrospray deposition [J]. Adv. Mater., 2009, 21(43): 4343-4347.
ZHAO X Y, WANG X, LIM S L, et al.. Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system [J]. Sol. Energ. Mat. Sol. C., 2014, 121: 119-125.
HAN Y L, WANG S, ZHANG X, et al.. Engineering physical microenvironment for stem cell based regenerative medicine [J]. Drug Discov. Today, 2014, 19(6): 763-773.
PAN C, CHEN Y, HSIEH C, et al.. Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method [J]. Sensor Actuat. A-Phys., 2014, 216(9): 318-327.
郑高峰, 何广奇, 刘海燕, 等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器 [J]. 光学精密工程, 2014, 22(6): 1555-1561. ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone [J]. Opt. Precision Eng., 2014, 22(6): 1555-1561. (in Chinese)
刘大利, 郭俊, 方淑慧, 等. 使用目标多特征识别的纳米纤维制造在线监测系统 [J]. 光学精密工程, 2012, 20(2): 360-368. LIU D L, GUO J, FANG SH H, et al.. On-line monitor system for nanoscale fiber manufacturing based on multi-featured pattern recognition [J]. Opt. Precision Eng., 2012, 20(2): 360-368. (in Chinese)
赵恩铭, 雒莘梓, 李乐, 等. 电纺氧化硅凝胶亚微米光波导 [J]. 光学精密工程, 2012, 10(6): 1282-1287. ZHAO E M, LUO S Z, LI L, et al.. Electrospun silicon gel submicrometer optical waveguides [J]. Opt. Precision Eng., 2012, 10(6): 1282-1287. (in Chinese)
BHATNAGAR P. Multiplexed electrospray deposition for protein microarray with micromachined silicon device [J]. Appl. Phys. Lett., 2007, 91(1): 014102-014102-014103.
OH H, KIM K, KIM S. Characterization of deposition patterns produced by twin-nozzle electrospray [J]. J. Aerosol Sci. 2008, 39(9): 801-813.
DENG W, KLEMIC J F, LI X, et al.. Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets [J]. J. Aerosol Sci., 2006, 37(6): 696-714.
DUBY M H, DENG W, KIM K, et al.. Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement [J]. J. Aerosol Sci., 2006, 37(3): 306-322.
FORBES T P, BREWER T M, GILLEN G. Primary and secondary droplet and charge transmission characteristics of desorption electro-flow focusing ionization [J]. Appl. Phys. Lett., 2013, 102(21): 214102.
KANEV I L, BALABAEV N K, GLYAKINA V, et al.. Computer simulation of gas-phase neutralization of electrospray-generated protein macroions [J]. J. Phys. Chem. B., 2012, 116(20): 5872-5881.
ACERO A, REBOLLO M N, MONTANERO J, et al.. A new flow focusing technique to produce very thin jets [J]. J. Micromech. Microeng., 2013, 23(6): 065009.
0
浏览量
434
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构