浏览全部资源
扫码关注微信
1. 燕山大学 河北省并联机器人与机电系统实验室,河北 秦皇岛,066004
2. 燕山大学 先进锻压成型技术与科学教育部重点实验室,河北 秦皇岛,066004
收稿日期:2014-08-09,
修回日期:2014-09-20,
纸质出版日期:2015-04-25
移动端阅览
周鑫, 许允斗, 姚建涛等. 5-UPS/PRPU冗余驱动并联机床完整刚度模型及其刚度特性[J]. 光学精密工程, 2015,23(4): 1070-1080
ZHOU Xin, XU Yun-dou, YAO Jian-tao etc. Complete stiffness model and stiffness performance of 5-U P S/ P RPU redundantly actuated parallel machine tool[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1070-1080
周鑫, 许允斗, 姚建涛等. 5-UPS/PRPU冗余驱动并联机床完整刚度模型及其刚度特性[J]. 光学精密工程, 2015,23(4): 1070-1080 DOI: 10.3788/OPE.20152304.1070.
ZHOU Xin, XU Yun-dou, YAO Jian-tao etc. Complete stiffness model and stiffness performance of 5-U P S/ P RPU redundantly actuated parallel machine tool[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1070-1080 DOI: 10.3788/OPE.20152304.1070.
基于全雅可比矩阵和虚功原理建立了5-UPS/PRPU冗余驱动并联机床的完整刚度模型。首先基于螺旋理论推导出约束分支中的约束雅可比矩阵;然后锁定分支中的主动副并利用互易积原理求得驱动雅可比矩阵
最后提出了冗余驱动雅可比矩阵。利用约束力、驱动力和冗余驱动力与外力的映射关系
结合虚功原理
得到系统整体刚度矩阵。考虑虎克铰、轴承等传动部件的轴向变形对分支轴向刚度的影响
构造了各个分支的轴向刚度模型。借助激光跟踪仪对所建立的刚度模型进行了实验测试。结果表明:该刚度模型的误差为2%~5%
验证了理论分析的可靠性。在此基础上
以机床的线刚度和角刚度的最小值为刚度性能指标
分析了其在工作空间内的分布情况。分析显示:机床线刚度的最小值主要分布在
Y
轴两侧
角刚度的最小值则主要分布在-0.05≤
z
≤0.05 m和-0.11≤
y
≤-0.05 m
因此
在进行并联机床工具规划时应该尽量避免该区域。文中内容可为并联机床刀具运动轨迹的优化提供参考依据。
A complete stiffness model of the 5-UPS/PRPU redundantly actuated parallel machine tool was constructed based on the overall Jacobian matrix and the principle of virtual working. Firstly
the Jacobian matrix of a constraint limb was derived by using screw theory; then
the Jacobian matrix of actuations was derived by using the theory of reciprocal screw and by locking actuated joint in each limb; finally
a redundant Jacobian matrix was designed. By using the mapping relationship between constraint forces
actuated forces
redundantly actuated forces and external forces
the complete stiffness model of the overall system was obtained combining with the principle of virtual work. Furthermore
by taking the effect of the axial deformation of a universal joint
a spherical joint and some other transmission parts on the linear stiffness of each limb into consideration
the axial line stiffness model of each single limb was constructed. The stiffness model was further validated by a laser tracker. The experiment results show that the error of stiffness model is 2%-5%
which means that the theoretical analysis is acceptable. On this basis
the stiffness performance of the machine tool was evaluated by utilizing the minimum linear/angle stiffness values
the minimum stiffness distribution in the workspace was investigated
and the minimum stiffness area was generalized. It shows that the minimum linear stiffness distributes on both sides of
Y
-axis
the minimum angle stiffness distributes on the -0.05≤
z
≤0.05 m and -0.11≤
y
≤-0.05 m
which suggests that the programmer should avoid this area when the trajectory of the Parallel Machine Tool(PMT) is planned. The research provides a theoretical reference for the track programming of the 5-UPS/PRPU redundantly actuated PMT.
马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学精密工程, 2014, 22(2):338-345. MA L, XIE W, LIU B, et al.. Design of micro-position stage with flexure hinge[J]. Opt. Precision Eng., 2014, 22(2):338-345.
吕帮俊, 朱石坚, 彭利坤, 等. Stewart 机构刚度映射建模与仿真[J]. 振动与冲击, 2011, 30(4):178-181. LV B J, ZHU SH J, PENG L K, et al.. Stiffness mapping modeling and simulation for Stewart mechanism[J]. Journal of Vibration and Shock, 2011, 30(4):178-181. (in Chinese)
RIZK R, MUNTEANU M, FAUROUX J C, et al.. A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility [J]. Journal of Machine Engineering, 2006, 6(2):45-55.
WANG D, FAN R, CHEN W Y. Stiffness analysis of a hexaglide parallel loading mechanism[J]. Mechanism and Machine Theory, 2013, 70: 454-473.
WANG J S, WANG L P, LI T M, et al.. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy [J]. Mechanism and Machine Theory, 2009, 44(2):289-305.
LI Y G, LIU H T, ZHAO X M, et al.. Design of a 3-DOF PKM module for large structural component machining [J]. Mechanism and Machine Theory, 2010, 45(6): 941-954.
白志富, 陈五一. 球铰刚度计算模型及靠冗余支链实现并联机床刚度的改善[J]. 机械工程学报, 2006, 42(10):142-145. BAI ZH F, CHEN W Y. Stiffness computation model of spherical joints and PKM's stiffness improvement by redundant leg [J]. Chinese Journal of Mechanical Engineering, 2006, 42(10):142-145. (in Chinese)
LAW M, IHLENFELDT S, WABNER M, et al.. Position-dependent dynamics and stability of serial-parallel kinematic machines[J]. CIRP Annals - Manufacturing Technology, 2013, 62(1): 375-378.
WU J, WANG J S, WANG L P, et al.. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy [J]. Mechanism and Machine Theory, 2009, 44(2): 289-305.
王友渔, 黄田, CHETWYND D G, 等. Tricept 机械手静刚度解析建模方法[J]. 机械工程学报, 2008, 44(8):13-19. WANG Y Y, HUANG T, CHETWYND D G, et al.. Analytical method for stiffness modeling of the Tricept robot [J]. Chinese Journal of Mechanical Engineering, 2008, 44(8):13-19. (in Chinese)
王友渔, 黄田, 梅江平, 等. 考虑复杂机架柔性的并联构型装备刚度半解析建模方法[J]. 科学通报, 2008, 53(3):364-372. WANG Y Y, HUANG T, MEI J P, et al.. Semi-analytical modeling method for parallel kinematic machines considering the complex frame flexible [J]. Chinese Science Bulletin, 2008, 53(3):364-372. (in Chinese)
MAJOU F, GOSSELIN C, WENGER P, et al.. Parametric stiffness analysis of the Orthoglide[J]. Mechanism and Machine Theory, 2007, 42(3): 296-311.
JONES A. The Mathematical Theory of Rolling Elements Bearings[M]. Mechanical Design and Systems Handbook. New York: McGraw-Hill, 1966, 13: 1-76.
姚建涛, 李立建, 窦玉超, 等. 大型射电望远镜天线副面调整机构完整刚度模型及微位移分析[J]. 机械工程学报, 2013, 49(21):44-53. YAO J T, LI L J, DOU Y CH, et al.. Complete stiffness model and micro-displacement analysis for large radiotelescopeantenna subreflector adjusting mechanism[J]. Chinese Journal of Mechanical Engineering, 2013, 49(21):44-53. (in Chinese)
黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. HUANG ZH, ZHAO Y SH, ZHAO T SH. Advanced Spatial Mechanism[M]. Beijing:Higher Education Press, 2006. (in Chinese)
KIM J J, CHOI Y M, AHN D, et al.. A millimeter range flexure based nano position stage using a self-guided displacement amplification mechanism[J]. Mechanism and Machine Theory, 2012, 50(4):109-120.
0
浏览量
942
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构