浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-11-01,
修回日期:2014-01-05,
纸质出版日期:2015-04-25
移动端阅览
李洪文, 邓永停, 王建立. 永磁同步电机速度控制器的全数字化集成[J]. 光学精密工程, 2015,23(4): 1105-1113
LI Hong-wen, DENG Yong-ting, WANG Jian-li. Digital integration of PMSM speed controller based on FPGA[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1105-1113
李洪文, 邓永停, 王建立. 永磁同步电机速度控制器的全数字化集成[J]. 光学精密工程, 2015,23(4): 1105-1113 DOI: 10.3788/OPE.20152304.1105.
LI Hong-wen, DENG Yong-ting, WANG Jian-li. Digital integration of PMSM speed controller based on FPGA[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1105-1113 DOI: 10.3788/OPE.20152304.1105.
基于现场可编程门阵列(FPGA)设计了具有Anti-windup策略的速度控制器用于永磁同步电机伺服控制系统
并给出了相应的集成设计方法。该方法通过单片FPGA实现永磁同步电机的全数字集成控制。采用FPGA的嵌入式Nios II核完成速度环控制策略
通过FPGA的并行硬件电路实现了高速电流环控制器。为了解决速度给定较大时产生的控制器积分饱和问题
设计了具有Anti-windup策略的PI速度控制器用于有效地减小转速超调量
缩短调节时间。实验结果表明:与PI控制器相比
使用这种速度控制方法可使永磁同步电机最大转速跟踪精度提高10 r/min
且具有良好的动态性能和稳态精度。提出的设计方法满足永磁同步电机伺服控制系统的设计需要。
On the basis of the Field Programming Gate Array(FPGA)
a speed controller with anti-windup strategy is designed for the servo control system of a high-performance Permanent Magnet Synchronous Motor(PMSM). Then
a corresponding integrating design method is given. The controller scheme realizes a fully digital and integrated PMSM servo control system on one-chip FPGA. The Nios II embedded processor is used to develop the speed controller strategy and a designed parallel hardware circuit is utilized to implement the current vector controller to meet the requirement of high sampling frequency. To overcome the windup phenomenon owing to integrator saturation under the large set-point changes
a PI speed controller with anti-windup strategy is designed to reduce the overshoot and settling time of the servo control system. Experiment results demonstrate that the proposed controller increases the steady speed accuracy to 10 r/min as compared with the traditional PI controller
and it satisfies the designed requirements of PMSM servo control system with better dynamic and static performance.
FUNG R F, HSU Y L, HUANG M S. System identification of a dual-stage XY precision positioning table [J]. Precision Engineering, 2009, 33(1):71-80.
BAIK I C, KIM K H, YOUN M J. Robust nonlinear speed control of PM synchronous motor using adaptive and sliding mode control techniques [J]. IEEE Proceedings Electr. Power Appl., 1998, 145(4):369-376.
陈向坚, 李迪, 白越, 等. 模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学精密工程, 2011, 19(7):1644-1650. CHEN X J, LI D, BAI Y, et al.. Application of type-Ⅱ fuzzy neural network to adaptive double axis motion control system[J]. Opt. Precision Eng., 2011, 19(7):1644-1650. (in Chinese)
ZHANG D, LI H. A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms[J]. IEEE Trans. Ind. Electron., 2008, 55(2):551-561.
KUNG Y S, HUANG CH CH, TSAI M H. FPGA realization of an adaptive fuzzy controller for PMLSM drive[J]. IEEE Trans. Ind. Electron., 2009, 56(8):2923-29352.
周兆勇, 李铁才, 高桥敏男. 基于矢量控制的高性能交流电机速度伺服控制器的FPGA实现[J]. 中国电机工程学报, 2004, 24(5):168-173. ZHOU ZH Y, LI T C, TOSHIO T. FPGA implementation of the high-performance vector-controlled speed servo controller for AC divers[J]. Proceedings of the CSEE, 2004, 24(5):168-173. (in Chinese)
LIN F J, WANG D H, HUANG P K. FPGA-based fuzzy sliding-mode control for a linear induction motor drive[J]. IEEE Proceedings Electr. Power Appl., 2005, 152(5):1137-1148.
JEZERNIK K, KORELIC J, HORVAT R. PMSM sliding mode FPGA-based control for torque ripple reduction [J]. IEEE Trans. Power Electron., 2013, 28(7):3549-3556.
LIN F J, TENG L T, CHANG C K. Adaptive backstepping control for linear-induction-motor drive using FPGA[C]. IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, 2006.
HALL T S, HAMBLEN J O. System-on-a-programmable-chip development platforms in the classroom[J].IEEE Trans. Education, 2004, 47(4):502-507.
KUNG Y S, TSAI M H. FPGA-based speed control IC for PMSM drive with adaptive fuzzy control [J]. IEEE Trans. Power Electron., 2007, 22(6):2476-2486.
李洪文. 基于内模PID控制的大型望远镜伺服系统[J]. 光学精密工程, 2009, 17(2): 328-332. LI H W. Servo system of large telescope based on internal model PID control method [J]. Opt. Precision Eng., 2009, 17(2); 328-332. (in Chinese)
PENG Y B, VRANCIC D, HANUS R. Anti-windup, bumpless, and conditioned transfer techniques for PID controllers[J]. IEEE Control Syst. Mag., 1996, 16(4):48-57.
王宏佳, 杨明, 牛里, 等. 永磁交流伺服系统速度控制器优化设计方法[J]. 电机与控制学报, 2012, 16(2):26-30. WANG H J, YANG M, NIU L, et al.. Optimal speed controller design method for permanent magnet AC servo system[J]. Electric Machines and Control, 2012, 16(2):26-30. (in Chinese)
HANUS R, KINNAERT M, HENROTTE J L. Conditioning technique, a general anti-windup and bumpless transfer method [J]. Automatica, 1987, 23(6):729-739.
SHIN H B. New antiwindup PI controller for variable-speed motor Drives [J]. IEEE Trans. Ind. Electron., 1998, 45(3):445-450.
CHOI J W, LEE S C. Antiwindup strategy for PI-type speed controller [J]. IEEE Trans. Ind. Electron., 2009, 56:2039-2046.
0
浏览量
345
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构