浏览全部资源
扫码关注微信
1. 重庆理工大学 时栅传感及先进检测技术重庆市重点实验室 重庆,400054
2. 合肥工业大学 仪器科学与光电工程学院,安徽 合肥,230009
3. 重庆理工大学 机械检测技术与装备教育部工程中心 重庆,400054
收稿日期:2014-08-26,
修回日期:2014-10-16,
纸质出版日期:2015-04-25
移动端阅览
孙世政, 彭东林, 郑方燕等. 时栅传感器动态测量误差补偿[J]. 光学精密工程, 2015,23(4): 1114-1121
SUN Shi-zheng, PENG Dong-lin, ZHENG Fang-yan etc. Compensation for dynamic measurement errors of time grating sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1114-1121
孙世政, 彭东林, 郑方燕等. 时栅传感器动态测量误差补偿[J]. 光学精密工程, 2015,23(4): 1114-1121 DOI: 10.3788/OPE.20152304.1114.
SUN Shi-zheng, PENG Dong-lin, ZHENG Fang-yan etc. Compensation for dynamic measurement errors of time grating sensor[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1114-1121 DOI: 10.3788/OPE.20152304.1114.
针对动态测量误差特点
提出了对系统误差和随机误差分别进行建模和组合补偿的思想来提高时栅传感器的动态测量精度。对具有周期性变化特征的系统误差采用傅里叶级数逼近的方法进行建模
运用最小二乘求解超定方程组的方法计算出系统误差的补偿参数。对于系统误差补偿后残留的随机误差采用灰色预测GM(1
1)模型进行预测
通过模型残差检验和修正提高预测的准确度。实验结果表明
利用傅里叶级数逼近模型有效地补偿了系统误差
误差由±35"降至±7.8"
通过最小二乘参数寻优得到的补偿参数与传感器实际的误差成分相吻合;灰色预测模型则很好地预测补偿了残留的随机误差
误差由±7.8"降至±3"。得到的结果表明
利用这种对误差分别建模和补偿的方法大幅度地降低了动态测量误差
有效地提高了传感器的测量精度。
According to the error characteristics in dynamic measurement
a targeted respective modeling and a combined compensation idea for systematic errors and random errors were proposed to improve the dynamic measuring accuracy of a time grating sensor. The Fourier series approach was presented to establish the model for the systematic errors with periodical changes
in which the compensation parameters for the systemic errors were calculated by using least square to solve overdetermined equation. Moreover
the grey model GM(1
1) was used for modeling random errors after compensation systemic errors and the forecast accuracy was improved by a residual error test and modification. The actual experiments show that systematic errors have been effectively compensated by Fourier series approach model
the original errors are reduced from ±35" to ±7.8"
and the compensation parameters are consistent with that of actual sensor. The random errors have been forecasted and compensated by GM(1
1) model
and the random errors are reduced from ±7.8" to ±3". These results demonstrate that proposed method compensates the dynamic errors greatly and the dynamic measurement accuracy of the embedded time grating sensor is effectively improved by using this modeling and compensation method.
彭东林, 李彦, 付敏, 等. 用于极端和特殊条件下机械传动误差检测的寄生式时栅研究[J]. 仪器仪表学报, 2013, 34(2):359-364. PENG D L, LI Y, FU M, et al.. Study on parasitic time grating sensors used for mechanical transmission error measurement under harsh and special environment [J]. Chinese Journal of Scientific Instrument, 2013, 34(2):359-364. (in Chinese)
付敏, 彭东林, 鲁进, 等. 基于时间参考点的差动式线阵CCD位移传感器[J]. 光学精密工程, 2014, 4(22):956-962. FU M, PENG D L, LU J, et al.. Differential and linear CCD displacement sensors based on time reference points[J]. Opt. Precision Eng., 2014, 4 (22):956-962. (in Chinese)
PENG T, YE W H, LIANG R J, et al.. Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold [J]. Journal of Mechnacial Engineering, 2013, 1(26):158-165.
WU D H, HUANG S L, WEI Z, et al.. Infrared thermometer sensor dynamic error compensation using Hammerstein neural network[J]. Sensors and Actuators A, 2009, 149:152-158.
姜湖海, 魏群, 贾宏光, 等. 共形导引头角增量误差分析及其前馈补偿[J]. 光学精密工程, 2014, 22(4):829-836. JIANG H H, WEI Q, JIA H G, et al.. Analysis of angle increment error in conformal seeker and its feedforward compensation [J]. Opt. Precision Eng., 2014, 22(4):829-836. (in Chinese)
杨洪涛, 刘勇, 费业泰, 等. 三坐标测量机动态误差混合建模方法[J]. 仪器仪表学报, 2010, 31(8):1861-1865. YANG H T, LIU Y, FEI Y T, et al.. Hybrid modeling method for CMM dynamic error [J]. Chinese Journal of Scientific Instrument, 2010, 31(8):1861-1865. (in Chinese)
高贯斌, 王文, 林铿, 等. 圆光栅角度传感器的误差补偿及参数辨识[J]. 光学精密工程, 2010, 18(8):1766-1772. GAO G B, WANG W, LIN K, et al.. Error compensation and parameter identification of circular grating angle sensors[J]. Opt. Precision Eng., 2010, 18(8):1766-1772. (in Chinese)
GUAN Q J, GAO F R, LIU G X, et al.. Dynamic error modeling based on time series and modern spectrum analysis[C]. Fourth International Symposium on Precision Mechanical Measurements, Anhui, P.R. China: SPIE, 2008:7130-7133.
李鸣鸣, 龚振邦, 程维明, 等. 纳米定位系统动态误差灰色模型补偿方法研究[J]. 光学精密工程, 2006, 14(1):89-94. LI M M, GONG ZH B, CHENG W M, et al.. Research of dynamic error compensation for nanopositioning system based on grey model[J]. Opt. Precision Eng., 2006, 14(1):89-94. (in Chinese)
陈自然, 彭东林, 刘小康, 等. 基于支持向量机时栅数控转台时序预测研究[J]. 仪器仪表学报, 2012, 33(8):1793-1799. CHEN Z R, PENG D L, LIU X K, et al.. Research on forecast method for time grating CNC rotary table based on SVR and time series [J]. Chinese Journal of Scientific Instrument, 2012, 33(8):1793-1799. (in Chinese)
费业泰. 误差理论与数据处理[M]. 北京:机械工程出版社, 2007. FEI Y T. Error Theory and Data Processing[M]. Beijing: Chinese Mechine Press, 2007.
吴宏圣, 曾琪峰, 乔栋, 等. 提高光栅莫尔条纹信号质量的滤波方法[J]. 光学精密工程, 2011, 19(8):1944-1949. WU H SH, ZHENG Q F, QIAO D, et al.. Filtering method of improving quality of grating Moir fringe [J]. Opt. Precision Eng., 2011, 19(8):1944-1949. (in Chinese)
张宁, 沈湘衡, 杨亮, 等. 利用动态靶标谐波特性评价光电经纬仪的跟踪性能[J]. 光学精密工程, 2010, 18(6):1286-1293. ZHANG N, SHEN X H, YANG L, et al.. Evaluation of tracking performance of photoelectric theodolite by using harmonic property of dynamic target [J]. Opt. Precision Eng., 2010, 18(6): 1286-1293. (in Chinese)
彭小强, 戴一帆, 唐宇, 等. 基于灰色预测控制的磁流变抛光液循环控制系统[J]. 光学精密工程, 2007, 15(1):100-105. PENG X Q, DAI Y F, TANG Y, et al.. Circulatory system for MR fluid based on gray forecast control algorithm [J]. Opt. Precision Eng., 2007, 15(1):100-105. (in Chinese)
0
浏览量
959
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构