浏览全部资源
扫码关注微信
1. 西北工业大学 电子信息学院,陕西 西安,710072
2. 铜陵学院 电气工程学院,安徽 铜陵,244000
3. 铜陵学院 数学与计算机学院,安徽 铜陵,244000
收稿日期:2014-11-21,
修回日期:2015-01-12,
纸质出版日期:2015-04-25
移动端阅览
王忠良, 冯燕, 肖华等. 高光谱图像的分布式压缩感知成像与重构[J]. 光学精密工程, 2015,23(4): 1131-1137
WANG Zhong-liang, FENG Yan, XIAO Hua etc. Distributed compressive sensing imaging and reconstruction of hyperspectral imagery[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1131-1137
王忠良, 冯燕, 肖华等. 高光谱图像的分布式压缩感知成像与重构[J]. 光学精密工程, 2015,23(4): 1131-1137 DOI: 10.3788/OPE.20152304.1131.
WANG Zhong-liang, FENG Yan, XIAO Hua etc. Distributed compressive sensing imaging and reconstruction of hyperspectral imagery[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1131-1137 DOI: 10.3788/OPE.20152304.1131.
根据高光谱数据的特点
提出了一种基于像元的分布式压缩采样模型来实现高光谱图像的有效压缩采样与重构。搭建了能实现该模型的压缩采样光谱成像系统
并研究了用于该系统成像的重构算法。在图像采集阶段
将高光谱数据分为参考像元和压缩感知像元;地面像元的辐射能通过棱镜进行谱带分离
再利用数字微镜器件实现谱带的线性编码。对压缩感知像元进行低采样率的线性编码
对参考像元进行采样率为1的线性编码。压缩采样数据重构时
不再采用传统方法直接重构高光谱数据
而是利用线性混合模型将重构高光谱数据转换成端元提取和丰度估计
然后根据重构的端元和丰度恢复原数据。对比实验表明
在压缩采样数据为总数据的20%时
重构的平均信噪比提高了10 dB。所设计的成像系统应用压缩感知理论减少了采集的数据量
采样方式简单
可应用于星载或机载的高光谱压缩感知成像。
According to the characteristics of high spectral data
a distributed compressed sampling model based on pixels was proposed to realize the efficient compressive sampling and reconstruction. A spectral imaging system based on distributed compressed sampling was established and a reconstruction algorithm for this system was investigated. In the image acquisition stage
the hyperspectral data were divided into key pixels and compressive sensing pixels. The ground pixels were separated along the spectral direction by a prism. Then
the linear encoding between the spectral bands was realized by a digital micro-mirror device. The compressive sensing pixels were coded with a low sampling rate
and the key pixels were coded by a sampling rate of 1. In the reconstruction of the compressive sampled data
the traditional compressive sensing reconstruction methods which recover hyperspectral data directly were abandoned. However
the linear mixed models were used to convert the hyperspectral data reconstruction into an endmember extraction and an abundance estimation
then
the hyperspectral data were recovered by using the extracted endmember and estimated abundance. The comparison experiments show that the reconstruction average signal noise rate by proposed algorithm is improved about 10 dB when the used data are 20% that of total data. The system is suitable for the spaceborne or airborne hyperspectral compressive sensing imaging for its less data collected and simple sampling method.
孙朗, 胡炳樑, 王爽, 等. 压缩采样光谱调制技术研究[J]. 光子学报, 2013, 42(8): 912-915. SUN L, HU B L, WANG SH, et al.. Compressive sampling spectral modulated technique[J]. Acta Photonica Sinica, 2013, 42(8): 912-915. (in Chinese)
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
DUARTE M F, DAVENPORT M A, TAKHAR D, et al.. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):83-91.
陈涛, 李正炜, 王建立, 等. 应用压缩传感理论的单像素相机成像系统[J]. 光学精密工程, 2012, 20(11): 2523-2530. CHEN T, LI ZH W, WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing [J]. Opt. Precision Eng., 2012, 20(11): 2523-2530. (in Chinese)
SUN T, KELLY K. Compressive sensing hyperspectral imager[C]. Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, San Jose, California, 2009: CTuA5.
王忠良, 冯燕, 王丽. 推扫式高光谱谱间压缩感知成像与重构[J]. 光学精密工程, 2014, 22(11):3129-3133. WANG ZH L, FENG Y, WANG L. Compressive sensing imaging and reconstruction of pushbroom hyperspectral imaging of spectral[J]. Opt. Precision Eng., 2014, 22(11): 3129-3133. (in Chinese)
朱明, 高文, 郭立强. 压缩感知理论在图像处理领域的应用[J]. 中国光学, 2011, 4(5): 441-447. ZHU M, GAO W, GUO L Q. Application of compressed sensing theory in image processing [J]. Chinese Optics, 2011, 4(5): 441-447. (in Chinese)
DO T T, CHEN Y, NGUYEN D T, et al.. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, 2009: 1393-1396.
贾应彪, 冯燕, 王忠良, 等. 基于谱间结构相似先验的高光谱压缩感知重构[J]. 电子与信息学报, 2014, 36(6): 1406-1412. JIA Y B, FENG Y, WANG ZH L, et al.. Hyperspectral compressive sensing recovery via spectrum structure similarity[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1406-1412. (in Chinese)
LI CH B, SUN T, KELLY K F, et al.. A comp-ressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 1200-1210.
FOWLER J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing. 2009, 18(10): 2230-2242.
王忠良, 冯燕, 贾应彪. 基于线性混合模型的高光谱图像谱间压缩感知重构[J]. 电子与信息学报, 2014, 36(11): 2737-2743. WANG ZH L, FENG Y, JIA Y B. Reconstruction of hyperspectral images with spectral compressive sensing based on linear mixing models [J]. Journal of Electronics & Information Technology, 2014, 36(11): 2737-2743. (in Chinese)
AUGUST Y, VACHMAN C, STERN A. Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging[C]. Compressive Sensing II, Baltimore, MD, United states, 2013: 1-10.
DUARTE M F, SARVOTHAM S, BARON D, et al.. Distributed Compressed Sensing of Jointly Sparse Signals[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2005: 1537-1541.
BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al.. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
NASCIMENTO J M P, BIOUCAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910.
PV H Y, XIA W, WANG B, et al.. A fully constrained linear spectral unmixing algorithm based on distance geometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1157-1176.
VANE G, GREEN R O, CHRIEN T G, et al.. The airborne visible/infrared imaging spectrometer(aviris)[J]. Remote Sensing of Environment, 1993, 44(2):127-143.
0
浏览量
734
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构