浏览全部资源
扫码关注微信
1. 中南大学 信息科学与工程学院,湖南 长沙,410083
2. "移动医疗"教育部-中国移动联合实验室,湖南 长沙,410083
3. 湖南理工学院,湖南 岳阳,414000
收稿日期:2014-11-25,
修回日期:2015-01-23,
纸质出版日期:2015-04-25
移动端阅览
邹北骥, 张思剑, 朱承璋. 彩色眼底图像视盘自动定位与分割[J]. 光学精密工程, 2015,23(4): 1187-1195
ZOU Bei-ji, ZHANG Si-jian, ZHU Cheng-zhang. Automatic localization and segmentation of optic disk in color fundus image[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1187-1195
邹北骥, 张思剑, 朱承璋. 彩色眼底图像视盘自动定位与分割[J]. 光学精密工程, 2015,23(4): 1187-1195 DOI: 10.3788/OPE.20152304.1187.
ZOU Bei-ji, ZHANG Si-jian, ZHU Cheng-zhang. Automatic localization and segmentation of optic disk in color fundus image[J]. Editorial Office of Optics and Precision Engineering, 2015,23(4): 1187-1195 DOI: 10.3788/OPE.20152304.1187.
针对彩色眼底图像视盘定位时图像边缘高亮环对定位准确率的影响
提出了一种有效的图像预处理方法。针对已有的视盘分割算法中存在的问题
提出了一种结合形态学、椭圆拟合及梯度矢量流(GVF) Snake模型的分割算法。提出的预处理方法首先利用最小二乘法拟合出眼底图像的边界
然后裁剪掉边界的一部分高亮像素点
最后进行视盘定位。视盘分割算法则首先进行血管擦除
然后用椭圆拟合提取初始轮廓
最后使用GVF Snake精确调整视盘边界。用提出的方法对Messidor眼底图像数据库1 200幅图像上进行了实验
结果显示:视盘定位准确率由原来没经过预处理的95.4%提升到了98.7%;视盘分割错误率与当前已知最好的算法相比由12.5%降低到了9.39%。结果表明:提出的眼底图像视盘自动定位与分割方法准确率高、实用性强
可以用于眼科疾病的计算机辅助诊断。
An effective pre-processing method is proposed to overcome the influence of a bright ring caused by the edge of a color fundus image on optic disk localization. Then
a novel method integrating the morphology
ellipse fitting and a Gradient Vector Flow (GVF) Snake model is proposed to implement the segmentation of the optic disk. The proposed pre-processing method uses least square method to fit the edge of color fundus image
and then clips some bright pixels near the edge. Finally
it localizes the optic disk. Furthermore
the proposed segmentation algorithm segments the optic disk by 3 steps: vascular erase
ellipse fitting and a fine tune step using GVF Snake model. A test is performed with 1 200 color fundus images from Messidor color fundus image database. The test results indicate that the localization accuracy for the optic disk rises from 95.4% to 98.7% as comparing with the traditional method. Moreover
the optic disk segmentation error has dropped from 12.5% to 9.39% as comparing with the current known best algorithm. It concludes that the proposed method of automatic localization and segmentation of optic disk in color fundus images have strong practicability and high accuracy and are suitable for the computer-aided diagnosis of ocular diseases.
朱承璋, 向遥, 邹北骥, 等. 基于分类回归树和AdaBoost的眼底图像视网膜血管分割[J]. 计算机辅助设计与图形学学报, 2014, 26(3):445-451. ZHU CH ZH, XIANG Y, ZOU B J, et al.. Retinal vessel segmentation in fundus images using CART and AdaBoost [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(3):445-451. (in Chinese)
XIANG Y, GAO X, ZOU B J, et al.. Segmentation of retinal blood vessels based on divergence and bot-hat transform[C]. Proceedings of International Conference on Progress in Informatics and Computing, Shanghai, China: IEEE, 2014:316-320.
QUIGLEY H A, BROMAN A T. The number of people with glaucoma worldwide in 2010 and 2020 [J]. British Journal of Ophthalmology, 2006, 90(3): 262-267.
HOOVER A, GOLDBAUM M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels [J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 951-958.
LI H Q, CHUTATAPE O. Automated feature extraction in color retinal images by a model based approach [J]. IEEE Transactions on Bio-Medical Engineering, 2004, 51(6): 246-254.
OSAREH A, MIRMEHDI M, THOMAS B, et al.. Automated identification of diabetic retinal exudates in digital colour images [J]. British Journal of Ophthalmology, 2003, 87(10): 1220-1223.
ABDEL-RAZIK YOUSSIF A A H, GHALWASH A Z, ABDEL-RAHMAN GHONEIM A A S. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter [J]. IEEE Transactions on Medical Imaging, 2008, 27(1): 11-18.
LI H, CHUTATAPE O. Automatic location of optic disk in retinal images[C]. Proceedings of 2001 International Conference on Image Processing, Thessaloniki, Greece: IEEE, 2001: 837-840.
FORACCHIA M, GRISAN E, RUGGERI A. Detection of optic disc in retinal images by means of a geometrical model of vessel structure [J]. IEEE Transactions on Medical Imaging, 2004, 23(10): 1189-1195.
MAHFOUZ A E, FAHMY A S. Fast localization of the optic disc using projection of image features [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3285-3289.
何志勇, 孙立宁, 黄伟国, 等. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学精密工程, 2012, 10(20):2315-2323. HE ZH Y, SUN L Y, HUANG W G, et al.. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram [J]. Opt. Precision Eng., 2012, 10(20):2315-2323. (in Chinese)
SEKHAR S, AL-NUAIMY W, NANDI A K. Automated localization of retinal optic disk using Hough transform[C]. Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France: IEEE, 2008:1577-1580.
JONAS J B, BUDDE W M, PANDA-JONAS S. Ophthalmoscopic evaluation of the optic nerve head [J]. Survey of Ophthalmology, 1999, 43(4): 293-320.
DANIEL W, JACOB S, CLEYSON M K, et al. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach [J]. Computers in Biology and Medicine, 2010, 40(2): 124-137.
SALEH M D, SALIH N D, ESWARAN C, et al.. Automated segmentation of optic disc in fundus images[C]. Proceedings of 2014 IEEE 10th International Colloquium on Signal Processing & its Applications (CSPA), Kuala Lumpur, Malaysia: IEEE, 2014: 145-150.
YIN F, LIU J, ONG S H, et al.. Model-based optic nerve head segmentation on retinal fundus images[C]. Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA: IEEE, 2011:2626-2629.
NARASIMHAN K, VIJAYAREKHA K, JOGINARAYANA KA, et al.. Glaucoma detection from fundus image using opencv [J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(24): 5459-5463.
CHENG J, LIU J, XU Y, et al.. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening [J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1019-1032.
赖小波, 刘华山, 方纯洁. 融合特征相互关系的视网膜微动脉瘤提取[J]. 光学精密工程, 2013, 21(8): 2187-2194. LAI X B, LIU H SH, FANG CH J. Retinal microaneurysm extraction by fusing relationship among features [J]. Opt. Precision Eng., 2013, 21(8): 2187-2194. (in Chinese)
XU C, PRINCE J L. Snakes, shapes, and gradient vector flow [J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
李天庆, 张毅, 刘志, 等. Snake模型综述[J]. 计算机工程, 2005, 31(9): 1-3. LI T Q, ZHANG Y, LIU ZH, et al.. An overview on snakes models [J]. Computer Engineering, 2005, 31(9): 1-3.(in Chinese)
AQUINO A, GEGUNDEZ-ARIAS ME, MARIN D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques [J]. IEEE Transactions on Medical Imaging, 2010, 29(10): 1860-1869.
0
浏览量
535
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构