浏览全部资源
扫码关注微信
中国科学院 高能物理研究所 北京同步辐射装置 X射线光学与技术实验室 北京,100049
收稿日期:2015-01-26,
修回日期:2015-02-13,
纸质出版日期:2015-05-25
移动端阅览
王秋实, 杨福桂*, 刘丁枭等. 基于纳米颗粒溶液散射的激光平场系统[J]. 光学精密工程, 2015,23(5): 1213-1220
WANG Qiu-shi, YANG Fu-gui*, LIU Ding-xiao etc. Laser flat-field system based on light scattering in nano-particle solution[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1213-1220
王秋实, 杨福桂*, 刘丁枭等. 基于纳米颗粒溶液散射的激光平场系统[J]. 光学精密工程, 2015,23(5): 1213-1220 DOI: 10.3788/OPE.20152305.1213.
WANG Qiu-shi, YANG Fu-gui*, LIU Ding-xiao etc. Laser flat-field system based on light scattering in nano-particle solution[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1213-1220 DOI: 10.3788/OPE.20152305.1213.
根据对阵列探测器光电响应误差校正的要求
基于纳米颗粒溶液漫散射效应建立了能产生高平整度参考光场的激光平场系统。介绍了激光平场装置的结构和工作原理及光学设计中涉及的若干关键技术。使用光纤将激光高效地导入溶液中
通过优化光纤位置和腔体结构参数
在保证一定光场均匀度的前提下
提高系统的光能利用率
降低界面上的背向散射损耗。基于改进过的蒙特卡洛程序
数值计算了腔体材料反射率对系统透射率的影响。最后
利用现有的高反射率聚四氟乙烯材料
设计了激光平场系统。结果显示
光纤端口的最优位置取决于腔体反射率
对于高反射率的腔体材料
靠近腔体背部的光纤端口可以有效增强前向散射。设计的激光平场系统能够提供的光场均匀度好于0.3%
可基本满足长程面形仪等高精度激光测量装置中探测器误差校正的需求。
To meet the demand of the high precision correction requirements of an array detector for photo-electronic response errors
a laser flat-field system based on diffuse scattering effect of nanoparticle solution was established to generate a reference light field with a high flatness. The structure and principle of the flat-field system were introduced and some key techniques involved in the design of optical system were also given. An optical fiber was used to deliver the laser into solution efficiently to reduce the backscattering light loss on the interface. By optimizing the fiber's position and structure parameters of the cavity
the utilization of light energy was improved with a stable light field uniformity. Using improved Monte Carlo method
the effect of diffuse reflector cavity on system transmission was studied numerically. Finally
a laser flat field system was established by using Polytetrafluoroethylene(PTFE) materials with high reflectivity. Results show that the optimal position of the fiber depends on the cavity reflectivity. For high reflectance material
the optic port of the fiber near the cavity back can effectively enhance forward scattering. The laser flat field system provides the light field with a nonuniformity better than 0.3%
which basically meets the requirements of precision instruments for detector error correction
such as a long trace profiler.
江效国, 祁双喜, 王婉丽, 等. 光纤锥耦合CCD相机图像的平场校正方法[J]. 强激光与粒子束, 2004, 16(11):1361-1364. JIANG X G, QI SH X, WANG W L, et al.. Flat-field-correction method for image taken by a fiber optic taper coupled CCD camera [J]. High Power Laser and Particle Beams, 2004, 16(11): 1361-1364. (in Chinese)
修吉宏, 黄浦, 李军, 等. 大面阵彩色CCD航测相机的辐射定标[J]. 光学精密工程, 2012, 20(6):1365-1373. XIU J H, HUANG P, LI J, et al.. Radiometric calibration of large area array color CCD aerial mapping camera [J]. Opt. Precision Eng., 2012, 20(6):1365-1373. (in Chinese)
程万胜, 赵杰, 蔡鹤皋. CCD像素响应非均匀的校正方法[J]. 光学精密工程, 2008, 16(2):314-318. CHENG W SH, ZHAO J, CAI H G. Correction method for pixel response nonuniformity of CCD [J]. Opt. Precision Eng., 2008, 16(2):314-318. (in Chinese)
FOX E C, NIXON O, DYKAAR D R, et al.. A high speed linear CCD sensor with pinned photodiode photosite for low lag and low noise imaging [J]. SPIE, 1998, 3301: 17-26.
YASHCHUK V V. Positioning errors of pencil-beam interferometers for long trace profilers [J]. SPIE, 2006, 6317: 63170A-63170A-12.
KIRSCHMAN J L, DOMNING E E, FRANCK K D, et al.. Flat-field calibration of CCD detector for long trace profiler [J]. SPIE, 2007, 6704: 67040J-67040J-11.
SCRIBNER D, SARKADY K, CAULFIELD J, et al.. Non-uniformity correction for staring IR focal plane arrays using scene-based techniques [J]. SPIE, 1990, 1308: 224-233.
HARRIS J G, CHIANG Y M. Nonuniformity correction using constant-statistics constraint: analog and digital implementations [J]. SPIE, 1997, 3061: 895-905.
GOODMAN J W. Statistical Properties of Laser Speckle Patterns. Laser Speckle and Related Phenomena [M]. Springer, 1975: 9-15.
常宏, 杨福桂, 董磊, 等. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响[J]. 物理学报, 2010, 59(7):4634-4639. CHANG H, YANG F G, DONG L, et al.. Effect of structure and size of laser spot on speckle contrast in laser scanning display [J]. Acta Physica Sinica, 2010, 59(7):4634-4639. (in Chinese)
PINE D J, WEITZ D A, CHAIKIN P M, et al.. Diffusing wave spectroscopy [J]. Physical Review Letters, 1988, 60(12): 1134-1137.
WANG L V, WU H. Biomedical Optics: Principles and Imaging [M]. John Wiley & Sons, 2012.
0
浏览量
405
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构