浏览全部资源
扫码关注微信
中国工程物理研究院 激光聚变研究中心,四川 绵阳,621900
收稿日期:2014-11-07,
修回日期:2015-01-12,
纸质出版日期:2015-05-25
移动端阅览
叶鑫, 倪锐芳, 黄进等. 自组装法制备的亚波长纳米多孔二氧化硅薄膜[J]. 光学精密工程, 2015,23(5): 1233-1239
YE Xin, NI Rui-fang, HUANG Jin etc. Sub-wavelength nano-porous silica anti-reflection coatings fabricated by dip coating method[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1233-1239
叶鑫, 倪锐芳, 黄进等. 自组装法制备的亚波长纳米多孔二氧化硅薄膜[J]. 光学精密工程, 2015,23(5): 1233-1239 DOI: 10.3788/OPE.20152305.1233.
YE Xin, NI Rui-fang, HUANG Jin etc. Sub-wavelength nano-porous silica anti-reflection coatings fabricated by dip coating method[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1233-1239 DOI: 10.3788/OPE.20152305.1233.
通过自组装技术在玻璃基底上制备了二氧化硅薄膜的亚波长多孔结构
这种类似于多晶的胶体晶体结构其特征尺寸约为90 nm
通过不同的提拉速度可以实现可见到红外不同波段的增透。系统研究了胶体乳液浓度、基片提拉速度对亚波长多孔薄膜透射谱的影响
探索了在不同波段实现高效率增透的最佳制备条件。通过等效介质理论(EMT)分析了这种亚波长多孔薄膜的光学特性
结果表明控制亚波长多孔结构的占空比可以改变等效膜层的折射率实现高效率增透。通过扫描电镜(SEM)表征了多孔膜的表面形貌
并通过图像处理的方式得到二氧化硅纳米粒子的占空比因子。实验结果表明:在一定范围内
提拉速度不同
对应的等效膜层的折射率会不同
膜层的透射率也不同。组装这种亚波长多孔纳米微结构最高增透率达到99.8%
且具有一定的宽带增透效果
通过控制膜层的厚度可以实现从可见光到红外波段的有效调谐
其在1 064 nm处的损伤阈值为21.74 J/cm
2
。
A subwavelength porous structure for SiO
2
anti-reflection coatings was fabricated on a glass substrate by dip coating method
which has a feature size of 90 nm and could be tuned the max-transmission wavelength from visible to infrared regions by different withdraw velocities. The effects of colloidal emulsion concentration and substrate lift velocity on the transmission spectrum of the subwavelength porous coating were researched and the best fabrication method for high efficiency anti-reflection in different wavelengths was explored. On the basis of effective medium theory (EMT)
the optical properties of the sub-wavelength nano-porous silica antireflection coating were analyzed. The results show that the control of duty ratio of subwavelength porous structure can change the refractive index of equivalent membrane layer and can realize the high efficiency anti-reflection. The surface topography of the porous SiO
2
anti-reflection coating was characterized by a scanning electron microscopy and the duty ratio of SiO
2
nanometer-particles was obtained by image processing. The research results indicate that different lifting speeds will obtain corresponding equivalent coatings with different refractive indexes and different transmitting indexes in a certain range. The max-transmission efficiency through the substrate of the sub-wavelength nanometer porous silica coating is increased to 99.8%. By controlling the thickness of coating layer
the effective turning implements from visible to infrared regions
and the Nd:YAG laser damage threshold of the antireflection coating exceeds 21.74 J/cm
2
at 1 064 nm.
张立超, 高劲松. 长春光机所深紫外光学薄膜技术研究进展[J]. 光学精密工程, 2012, 20(11):2395-2401. ZHANG L CH, GAO J S. Developments of DUV coating technologies in CIOMP [J]. Opt. Precision Eng., 2012, 20(11):2395-2401.(in Chinese)
HU G H, ZHAO Y A, SHAO J D, et al.. Real-time damage event imaging reveals the absorber inducing laser damage with low density in solgel antireflective coatings [J]. J. Opt. Soc. Am. B-Opt. Phys., 2013, 30: 1186-1193.
NIELSEN K H, ORZOL D K, KOYNOV S, et al.. Large area, low cost anti-reflective coating for solar glasses [J]. Sol Energy Mater. Sol Cells, 2014, 128: 283-288.
SERMON P A, BADHEKA R. MgF2 xerogels [J]. J. Sol-Gel Sci. Technol., 2004, 32: 149-153.
ASADOLLAHBAIK A, BODEN S A, CHARLTON M D, et al.. Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation [J]. Opt. Express, 2014, 22: A402-A415.
WALLRAFF G M, HINSBERG W D. Lithographic imaging techniques for the formation of nanoscopic features [J]. Chem. Rev., 1999, 99(7): 1801-1822.
王志俊, 李阳平, 周萧逸, 等. 紫外压印长波红外亚波长结构的涂胶工艺研究[J]. 光学精密工程, 2014, 22(8):2180-2187. WANG ZH J, LI Y P, ZHOU X Y, et al.. Spin coating of UV-curable resist for imprinting long-wave infrared subwavelength structures[J].Opt. Precision Eng., 2014, 22(8):2180-2187.(in Chinese)
MORI T, HASEGAWA K, HATANO T, et al.. Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process [J]. Opt. Lett., 2008, 33: 428-430.
PARK K C, CHOI H J, CHANG C H, et al.. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity [J]. ACS Nano, 2012, 6: 3789-3799.
ZHAO Y, WANG J S, MAO G Z. Colloidal subwavelength nanostructures for antireflection optical coatings[J].Optics Letters, 2005, 30(14):1885-1887.
STOBER W, FINK A. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968, 26: 62-69.
ANTONY S D, KUNIAKI N. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J]. Langmuir, 1996, 12(5):1303-1311.
MOTAMEDI M E, SOUTHWELL W H, GUNING W J. Antireflection surfaces in silicon using binary optics technology [J]. Applied Optics, 1992, 31: 4371-4376.
ALDONA B, SIMAS S, ANDRIUS M. Sol-gel derived optical coating with controlled parameters[J]. Materials Science, 2006, 12(4):283-286.
LIU Y, SHEN J, ZHOU B, et al.. Effect of hydrophobicity on the stability of sol-gel silica coatings in vacuum and their laser damage threshold [J]. J. Sol-Gel Sci. Technol., 2013, 68: 81-87.
LIU Y, SHEN J, LI X G, et al.. Effect of hydrophobicity on the vacuum-contamination resistance and laser damage threshold of sol-gel silica coating [J]. Chinese Journal of Inorganic Chemistry, 2013, 29: 1339-1344.
0
浏览量
787
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构