浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械及物理研究所,吉林 长春,130033
3. 中国人民解放军防化研究院 北京,102205
收稿日期:2014-07-20,
修回日期:2014-09-03,
纸质出版日期:2015-05-25
移动端阅览
韩冬松, 何昕, 魏仲慧等. 应用高精度旋转法的干涉仪检测误差校正[J]. 光学精密工程, 2015,23(5): 1297-1303
HAN Dong-song, HE Xin, WEI Zhong-hui etc. Error correction of interferometer detection with high-accuracy rotation method[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1297-1303
韩冬松, 何昕, 魏仲慧等. 应用高精度旋转法的干涉仪检测误差校正[J]. 光学精密工程, 2015,23(5): 1297-1303 DOI: 10.3788/OPE.20152305.1297.
HAN Dong-song, HE Xin, WEI Zhong-hui etc. Error correction of interferometer detection with high-accuracy rotation method[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1297-1303 DOI: 10.3788/OPE.20152305.1297.
针对利用高精度菲索型干涉仪和旋转平均法对光学元件进行面形绝对检测时对旋转精度的要求
提出了一种旋转误差校正模型来修正面形绝对检测中的旋转非对称项误差。首先基于经典
N
步旋转平均法理论
通过泽尼克多项式给出面形误差的数学表达形式;然后根据旋转角度所引起的误差修正泽尼克系数进而修正旋转非对称项误差;最后用数值仿真及实验的方法验证了校正模型的正确性。在旋转角度误差为0.1条件下的仿真结果显示:
N
步旋转平均法所得面形误差RMS值为真实面形的10.13%
校正后面形误差RMS值为真实面形的6.79%;实验结果显示:
N
步旋转平均法所得面形误差RMS值为真实面形的10.28%
校正后面形误差RMS值为真实面形的5.77%。这些结果证明所提出的校正模型准确可靠
提高了旋转平均法的检测精度。
According to the requirements of absolute flatness detection of optical elements for rotation accuracy by using high-accuracy rotation method based on a Fizeau interferometer
a rotary error correction model was proposed to correct the rotationally asymmetric deviation in the detection. Firstly
on the theoretical basis of the classical
N
-step rotation average method
a mathematical expression of surface deviation was given by Zernike polynomials. Then
the Zernike coefficient was corrected according to the error caused by the rotation angle and the rotationally asymmetric deviation was corrected. Finally
the correctness of the calibration model was verified by numerical simulation method and an actual experimental test. In the conditions in rotation error of 0.1
the simulation shows that the absolute detection error(Root Mean Square
RMS) is 10.13% by using the
N
-step rotation average method
and it can be promoted to 6.79% after being corrected. Moreover
the experiment shows that the detection error(RMS) is 10.28% by using the same method
and it is promoted to 5.77% after being corrected. These results demonstrate that the proposed calibration model is accurate and reliable
which improves the detection accuracy of the rotational averaging method and reduces the rotationally asymmetric deviation to the proportion of 27.2%.
HARIHARAN P. Interferometric testing of optical surfaces: absolute measurements of flatness [J]. Optical Engineering, 1997, 36(9):2478-2481.
GRECO V, TRONCONI R, VECCHIO C D, et al.. Absolute measurement of planarity with Fritz's method: uncertainty evaluation[J]. Applied Optics, 1999, 38(10):2018-2027.
RHEE H G. Self-calibration of high frequency errors of test optics by arbitrary N-step rotation [J]. International Journal of the Korean Society of Precision Engineering, 2000, 1(2):115-123.
EVANS C J, KESTNER R N. Test optics error removal [J]. Applied Optics, 1996, 35(7):1015-1021.
宋伟红, 伍凡, 侯溪, 等. 基于平移旋转的球面绝对检测技术仿真分析[J]. 强激光与粒子束, 2011, 23(12):3229-3234. SONG W H, WU F, HOU X, et al.. Simulation analysis on absolute testing of spherical surface with shift-rotation method [J]. High Power Laser Particle Beams, 2011, 23(12):3229-3234.(in Chinese)
ICHIKAWA H, YAMAMOTO T. Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts [P]. U S: Patents 5982490, 1999.
OTAKI K, YAMAMOTO T, FUKUDA Y, et al.. Accuracy evaluation of the point diffraction interferometer for extreme ultraviolet lithography aspheric mirror[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2002, 20(1):295-300.
SONG W, WU F, HOU X. Method to test rotationally asymmetric surface deviation with high accuracy [J]. Applied Optics, 2012, 51(22):5567-5572.
SONG W, WU F, HOU X, et al.. Absolute calibration of a spherical reference surface for a Fizeau interferometer with the shift-rotation method of iterative algorithm [J]. Optical Engineering, 2013, 52(3):033601-6.
GUENTHER S, WOLFGANG O. Method for the interferometric measurement of non-rotationally symmetric wavefront errors [P]. U S: Patents 7277186, 2007.
WOLFGANG O. Method for the interferometric measurement of non-rotationally symmetric wavefront errors [P]. U S: Patents 6839143, 2005.
苗二龙, 张健, 谷勇强, 等. 用于光刻投影物镜检测的高精度菲佐干涉仪误差分析[J]. 中国激光, 2010, 37(8):2029-2034. MIAO E L, ZHANG J, GU Y Q, et al..Measurement error analysis of high precision fizeau interferometer for lithography projection objective [J]. Chinese J.Lasers, 2010, 37(8): 2029-2034.(in Chinese)
刘克, 李艳秋. 一种新的相移点衍射干涉仪系统误差标定方法[J]. 光学学报, 2010, 30(10):2923-2927. LIU K, LI Y Q.A new calibration method of systematic errors in phase-shifting point diffraction iterferometer [J]. Acta Optica Sinica, 2010, 30(10):2923-2927.(in Chinese)
张建锋, 曹学东, 景洪伟, 等. 基于旋转法的干涉仪系统误差标定[J]. 光电工程, 2011, 38(12):69-74. ZHANG J F, CAO X D, JING H W, et al.. Rotation method for system error calibration of interferometer [J]. Opto-Electronic Engingeering, 2011, 38(12):69-74.(in Chinese)
石峰, 戴一帆, 彭小强, 等. 高精度光学表面磁流变修形[J]. 光学精密工程, 2009, 17(8):1859-1864. SHI F, DAI Y F, PENG X Q, et al.. Magnetorheological finishing for high-precision optical surface [J]. Opt. Precision Eng., 2009, 17(3):1859-1864.(in Chinese)
王平, 田伟, 王汝冬, 等. 旋转支撑法去除元件面形测量的夹持误差[J]. 光学学报, 2011, 31(8):126-134. WANG P, TIAN W, WANG R D, et al.. Rotating chuck test for removing chuck error of optical surface [J]. Acta Optica Sinica, 2011, 31(8):126-134.(in Chinese)
0
浏览量
804
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构